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Abstract

Inverse reinforcement learning (IRL) aims at estimating an unknown reward function optimized by some expert agent
from interactions between this expert and the system to be controlled. One of its major application fields is imitation
learning, where the goal is to imitate the expert, possibly in situations not encountered before. A classic and simple way
to handle this problem is to see it as a classification problem, mapping states to actions. The potential issue with this
approach is that classification does not take naturally into account the temporal structure of sequential decision making.
Yet, many classification algorithms consist in learning a score function, mapping state-action couples to values, such that
the value of the action chosen by the expert is higher than the others. The decision rule of the classifier maximizes the score
over actions for a given state. This is curiously reminiscent of the state-action value function in reinforcement learning, and
of the associated greedy policy.

Based on this simple statement, we propose two IRL algorithms that incorporate the structure of the sequential decision
making problem into some classifier in different ways. The first one, SCIRL (Structured Classification for IRL), starts
from the observation that linearly parameterizing a reward function by some features imposes a linear parametrization
of the Q-function by a so-called feature expectation. SCIRL simply uses (an estimate of) the expert feature expectation
as the basis function of the score function. The second algorithm, CSI (Cascaded Supervised IRL), applies a reversed
Bellman equation (expressing the reward as a function of the Q-function) to the score function outputted by any score-
based classifier, which reduces to a simple (and generic) regression step. These two algorithms come with theoretical
guarantees and perform competitively on toy problems.
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1 Introduction

Inverse reinforcement learning (IRL) aims at estimating an unknown reward function optimized by some expert agent
from interactions between this expert and the system to be controlled. One of its major application fields is imitation
learning, where the goal is to imitate the expert, possibly in situations not encountered before. A classic and simple way
to handle this problem is to see it as a classification problem, mapping states to actions. The potential issue with this
approach is that classification does not take naturally into account the temporal structure of sequential decision making.
Yet, many classification algorithms consist in learning a score function, mapping state-action couples to values, such that
the value of the action chosen by the expert is higher than the others. The decision rule of the classifier maximizes the score
over actions for a given state. This is curiously reminiscent of the state-action value function in reinforcement learning, and
of the associated greedy policy.

Based on this simple statement, we propose two IRL algorithms that incorporate the structure of the sequential decision
making problem into some classifier in different ways. The first one, SCIRL (Structured Classification for IRL), starts
from the observation that linearly parameterizing a reward function by some features imposes a linear parametrization
of the Q-function by a so-called feature expectation. SCIRL simply uses (an estimate of) the expert feature expectation
as the basis function of the score function. The second algorithm, CSI (Cascaded Supervised IRL), applies a reversed
Bellman equation (expressing the reward as a function of the Q-function) to the score function outputted by any score-
based classifier, which reduces to a simple (and generic) regression step. These two algorithms come with theoretical
guarantees and perform competitively on toy problems.

2 From Markov Decision Processes...

A Markov Decision process (MDP) [11] is a tuple {S,A,P,R, γ} where S is the finite state space1, A the finite actions
space, P = {Pa = (p(s′|s, a))1≤s,s′≤|S|, a ∈ A} the set of Markovian transition probabilities, R ∈ RS×A the state-action
reward function and γ the discount factor. A deterministic policy π ∈ SA defines the behavior of an agent. The quality of
this control is quantified by the value function vπR ∈ RS , associating to each state the cumulative discounted reward for
starting in this state and following the policy π afterwards: vπR(s) = E[

∑
t≥0 γ

tR(St, At)|S0 = s, π]. An optimal policy
π∗R (according to the reward function R) is a policy of associated value function v∗R satisfying v∗R ≥ vπR, for any policy π
and componentwise.

Let Pπ be the stochastic matrix Pπ = (p(s′|s, π(s)))1≤s,s′≤|S| and Rπ the reward function defined as Rπ(s) = R(s, π(s)).
With a slight abuse of notation, we may write a the policy which associates the action a to each state s. The Bellman
evaluation (resp. optimality) operator TπR (resp. T ∗R) : RS → RS is defined as TπRv = Rπ+γPπv (resp. T ∗Rv = maxπ T

π
Rv).

These operators are contractions and vπR and v∗R are their respective fixed-points: vπR = TπRv
π
R and v∗R = T ∗Rv

∗
R. The

action-value function Qπ ∈ RS×A adds a degree of freedom on the choice of the first action, it is formally defined as
QπR(s, a) = [T aRv

π
R](s). Let Q∗R be the optimal state-action value function, an important property is that any optimal

policy π∗R is greedy respectively to it:
π∗R(s) ∈ argmax

a∈A
Q∗R(s, a). (1)

Reinforcement learning and approximate dynamic programming aim at estimating the optimal control policy π∗R when
the model (transition probabilities and the reward function) is unknown (but observed through interactions with the
system to be controlled) and when the state space is too large to allow exact representations of the objects of interest (as
value functions or policies) [2, 12, 14]. We refer to this as the direct problem. On the contrary, (approximate) inverse
reinforcement learning [10] aims at estimating a reward function for which an observed policy is (nearly) optimal. Let us
call this policy the expert policy, denoted πE . We may assume that it optimizes some unknown reward functionRE . The
aim of IRL is to compute some reward R̂ such that the expert policy is (close to be) optimal, that is such that v∗R̂ ≈ v

πE
R̂

. We
refer to this as the inverse problem. This is an ill-posed problem, for which many approaches have been proposed (many
of them try to learn a reward function such that the related optimal policy matches some measure of the distribution
induced by the expert policy, see for example [9] for a brief overview).

3 ... to Classification

A major application of IRL is imitation learning, which aims at generalizing the observed behavior of the expert
controller πE . Using IRL, this could be done by searching for an optimal policy according to the estimated re-
ward R̂. A more classic approach is to cast imitation as a supervised learning problem. Assume that a trajectory
{(si, ai = πE(si), si+1)1≤i≤N} drawn by the expert is available. As the action set is finite (and usually small), one can

1This work can be extended to compact state spaces, up to some technical aspects.
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train a classifier on the dataset {(si, ai)1≤i≤N}. A classifier learns a decision rule πc which aims at minimizing the clas-
sification error εc = Es∼ρE [χπc(s)6=πE(s)], with χ being the indicator function and ρE the stationary distribution of the
policy πE . To do so, many approaches (e.g., multi-class support vector machines [5], structured classification [15], etc.)
actually learn a score function q ∈ RS×A from the dataset, ideally satisfying q(s, π(s)) > q(s, a), for any state s and any
non-optimal action a 6= πE(s). The decision rule is deduced from the learnt score function as

πc(s) ∈ argmax
a∈A

q(s, a). (2)

One can notice the similarity between Equations 1 and 2. If seeing the Q-function as a score function (ranking actions
according to the expected discounted cumulative rewards) is not new, seing the classifier’s score function as a state-
action value function (for some unknown reward) is less usual. This can bring some ideas for new IRL algorithms, as
exemplified in the next sections.

4 SCIRL (Structured Classification for IRL)

Recall that IRL aims at estimating a reward function. Assume that this reward is linearly parameterized by a set of
features φ, Rθ(s, a) = θ>φ(s, a). This naturally leads to a parametrization of the state-action value function, for any
policy π:

QπRθ (s, a) = E[
∑
t≥0

γtRθ(St, At)|S0 = s,A0 = a, π] = θ>E[
∑
t≥0

γtφ(St, At)|S0 = s,A0 = a, π]

= θ>µπ(s, a)

with µπ(s, a) = E[
∑
t≥0

γtφ(St, At)|S0 = s,A0 = a, π] (3)

being called the feature expectation. To sum up, choosing a parametrization for the reward imposes a parametrization for
the state-action value function of any policy, and notably for the one of the expert policy, QπERθ (s, a) = θ>µE(s, a) (using
µE as a shorthand for µπE ). For the unknown reward function RE , the expert (assumed optimal) policy πE is greedy
respectively to QπERE . Recalling Eq. 2, it is therefore quite natural to parameterize the score function of the classifier with
µE as linear features. This is the basic principle of the SCIRL algorithm [7], which can be summarized as follows:

1. parameterize the score function with the expert feature expectation: qθ(s, a) = θ>µE(s, a);
2. learn the parameter vector θ from the dataset {(si, ai = πE(si))1≤i≤N}, such as minimizing the classification

error εc;
3. output the rewardRθ (θ being the learnt parameters).

Obviously, the knowledge of µE is not a reasonable assumption. However, one can notice the similarity between the
feature expectation (Eq. 3) and a value function. Estimating µE essentially reduces to an (on-policy) policy evaluation
problem [6], which can be done using standard approaches such as the Least-Squares Temporal Differences (LSTD)
algorithm [4].

If the idea underlying SCIRL is quite intuitive, one can wonder if it comes with some sort of guarantees. The answer is
positive. One can show that, if the classification error is small and if the feature expectation is well estimated, then the
expert policy πE will be near optimal for the learnt rewardRθ. More formally, we have

0 ≤ Es∼ρE [v∗Rθc (s)− v
πE
Rθc

(s)] ≤ Cf
1− γ

(
εQ + εc

2γ‖Rθc‖∞
1− γ

)
,

with Cf being a standard concentration coefficient, εc being the already defined classification error and εQ quantifying
how well the expert feature expectation is estimated. See [7] for details. This algorithm also performs well empirically,
see Sec. 6 and [7].

5 CSI (Cascaded Supervised IRL)

The CSI algorithm [8] explores another way to combine classification with the temporal structure of sequential decision
making. Assuming that the optimal state-action value function is known (for some unknown rewardR), the reward can
easily be estimated by reversing the Bellman optimality equation:

R(s, a) = Q∗R(s, a)− γ
∑
s′∈S

p(s′|s, a)max
a′∈A

Q∗R(s
′, a′).
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Assume that using some classifier, a score function q has been learnt (with associated –greedy– decision rule πc). Then,
one can compute a reward functionRc associated to this score function as follows:

Rc(s, a) = q(s, a)− γ
∑
s′∈S

p(s′|s, a)max
a′∈A

q(s′, a′)

= q(s, a)− γ
∑
s′∈S

p(s′|s, a)q(s′, πc(s′)).

However, it is usually not reasonable to assume that the dynamics is known. The rewardRc can still be estimated using
any regression algorithm. Assume that a transition set {(sj , aj , s′j)1≤j≤M} is available (ideally such that the distribution
over (sj , aj) is as uniform as possible), then rj = q(sj , aj) − γq(s′j , πc(s′j)) is an unbiased estimate of Rc(sj , aj) and an
estimate R̂c can be computed using any regressor from the following training set{(

(sj , aj), rj = q(sj , aj)− γq(s′j , πc(s′j))
)
1≤j≤M

}
.

The CSI approach can be summarized as follows:

1. estimate a score function q using any score-based classifier trained on the dataset {(si, ai = πE(si))1≤i≤N};

2. estimate the reward R̂c using any regressor trained on {((sj , aj), rj = q(sj , aj)− q(s′j , πc(s′j)))1≤j≤M}.

CSI is derived from a simple idea, based again on the resemblance between a score function and a state-action value
function. Compared to SCIRL, it is more flexible, as any classifier (not necessarily based on a linear parametrization)
and any regressor can be used. One can again wonder if this comes with some sort of guarantee, the answer is here also
positive. If the classification and the regression error are small enough, then the expert policy πE is near optimal for the
estimated reward R̂c. More formally, we have

0 ≤ Es∼ρE [v∗R̂c(s)− v
πE
R̂c

(s)] ≤ 1

1− γ

(
εR(1 + Cg) + εc

2‖R̂c‖∞
1− γ

)
,

where Cg is another concentration coefficient (satisfying Cg ≤ Cf ) and where εR quantifies the regression error (notice
that it may be easier to control the term εR than the term εQ involved in the SCIRL bound). See [8] for more details. This
algorithm also performs well empirically, see Sec. 6 and [8].

6 Experiments

We illustrate the proposed approach on a car driving simulator, similar to [13]. The goal is to drive a car on a busy three-
lane highway with randomly generated traffic (driving off-road is allowed on both sides). The car can move left and
right, accelerate, decelerate and keep a constant speed. The expert optimizes a handcrafted reward RE which favours
speed, punish off-road, punishes collisions even more and is neutral otherwise.

We compare SCIRL and CSI to the “relative entropy” algorithm of [3] (which shares with SCIRL and CSI the desired
property of not requiring to solve repetitively MDPs, contrary to a large part of the state of the art) and to the unstructured
classifier (the one which serves as a basis for both CSI and SCIRL). Algorithms are compared according to an oracle
criterion, the mean value function (averaged over a uniform distribution U) of the learnt policy relatively to the unknown
rewardRE : Es∼U [vπRE (s)], with π the policy outputted by one of the considered algorithms (π optimizes the learnt reward
for IRL algorithms).

Results are reported on Fig. 6. IRL approaches work much better than the standard classification. We advocate that
this is due to the fact that they take into account the temporal structure of the problem. CSI and SCIRL have similar
performances (CSI being slightly –but statistically significantly– better than SCIRL), both are better than the state-of-the-
art algorithm of [3].

7 Perspectives

Thanks to the similarity between score functions in classification and state-action value functions in reinforcement learn-
ing, SCIRL and CSI have been introduced. Compared to the state of the art, they are quite generic (in the sense that
instantiations of these approaches can be derived by “plugging” a large class of well-studied supervised learning meth-
ods) and they do not require solving repetitively the direct RL problem (which is a common drawback of most of other
algorithms). Both approaches come with theoretical guarantees and perform competitively on toy problems.

3



Figure 1: Results on the Highway experiment (the right panel being a zoom of the left one)
.

We plan to apply SCIRL and CSI to more challenging problems, notably to robotics and to ALE (the Arcade Learning
Environment [1]). We also plan to study more deeply the theoretical aspects of these algorithms, notably if the bounds
we have are tight and how these error propagations can be used to get a more practical finite sample analysis. An-
other perspective is to propose new algorithms based on the resemblance between score functions and state-action value
functions. For example, CSI can be designed with a support vector machine (SVM) for the classification and a support
vector regressor (SVR) for the regression. The two related mathematical programs can be “merged”, and we are currently
studying this alternative IRL algorithm.
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