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Radosław Niewiadomski1, Jérôme Urbain2, Catherine Pelachaud1, Thierry Dutoit2

1LTCI-CNRS Telecom ParisTech
37 rue Dareau, 75014 Paris, France
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Abstract
This paper presents the results of the analysis of laughter expressive behavior. First we present the intensity annotation study of an
audiovisual corpus of spontaneous laughter. In the second part of the paper we present analysis of audio and visual cues that influence
the perception of laughter intensity, as well as on a study of audio and visual features that differ in laughter inhalation and exhalation
phases.
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1. Introduction
Several research works on social signals were recently un-
dertaken with possible applications in latest HCI technolo-
gies such as virtual agents. Laughter is one such signal.
It occurs frequently in human-human interaction, and may
have many functions and meanings, such as the expression
of some emotional states, as well as a social function (Adel-
sward, 1989). Surprisingly enough, virtual agents - soft-
ware created to be able to maintain natural multimodal ver-
bal and nonverbal interaction with humans - are still not
able to laugh. Knowledge about the expressive patterns of
laughter is still limited. Within the long term aim of build-
ing a laughing virtual agent, this paper presents the results
of our ongoing work on the analysis of laughter expressive
behavior. We report on the annotation of an audiovisual
corpus of spontaneous laughter, on a study of audio and vi-
sual cues that influence the perception of laughter intensity,
as well as on a study of audio and visual features that differ
in laughter inhalation and exhalation phases.
This paper is structured as follows. In next Section we ex-
plain the motivation of this research. Section 3. is dedi-
cated to the description of the intensity annotation protocol.
Then, in Section 4. we present the data analysis that we re-
alized so far whereas in Section 5. we present the detailed
results. Finally we conclude the paper in Section 6.

2. Motivation for this work
Multimodal laughter synthesis is a complex task. In laugh-
ter, the body movements and the tight synchronization be-
tween audio and visual signals of the expression is crucial.
Laughter is a highly multimodal expression composed of
very quick rhythmic shoulders and torso movements, vis-
ible inhalation, several facial expressions which are often
accompanied with some rhythmic as well as communica-
tive gestures (Ruch and Ekman, 2001). This makes its syn-
thesis particularly challenging. Recent studies on laugh-

ter suggest that there exist different types of laughter that
can have different expressive patterns (Huber et al., 2009).
Consequently, even a small incongruence in laughter syn-
thesis may influence its perception. Particular attention has
to be put on the synchronization between modalities which
seems to be the key factor of successful laughter synthesis.
Thus we need to study first the synchronization between
modalities in the human laugh acts.
Even less is known about which audio and visual cues in-
fluence the perception of laughter intensity. Differently to
many other expressive behaviors studied so far, laughter is
a highly multimodal expression. We expect that for laugh-
ter the perceived intensity should be a global evaluation
that takes into consideration all single monomodal signals.
Thus measuring only audio loudness or only mouth open-
ness is not enough to define laughter intensity. Obviously
the knowledge about these audio and/or visual cues that in-
fluence laughter intensity perception is indispensable in re-
alistic laughter synthesis. In order to properly model laugh-
ter in virtual agents, we first need to find the factors that
influence the perception of the intensity of human laughs.
In this paper we describe the results of some studies aim-
ing to better understand the expressive patterns of hu-
man laughter. We mainly focus on the intensity of laugh-
ter. For the purpose of this study we used the AudioVi-
sualLaughterCycle (AVLC) corpus (Urbain et al., 2010)
that contains about 1000 spontaneous audio-visual laughter
episodes with no overlapping speech. The episodes were
recorded with the participation of 24 subjects. Each sub-
ject was recorded watching a 10-minutes comedy video.
Smart Sensor Integration (Wagner et al., 2009) was used
to acquire the signals and manually annotate (and segment)
the laughter episodes. The number of laughter episodes for
a subject varies from 4 to 82. Each episode was captured
with one of two motion capture systems (Optitrack or Zign-
track) and synchronized with the corresponding audiovisual



sample. Each segmented laugh was also phonetically an-
notated (Urbain and Dutoit, 2011). Two annotation tracks
were used: one to indicate the airflow direction (inhaling or
exhaling), the other for the actual phonetic transcription.

3. Intensity annotation
We conducted an annotation study of laughter intensity of
the AVLC database. The annotation was realized through
a web application. This application is composed of a set
of web pages; each of them displays one AVLC episode.
Our coders were asked to give an overall score of their per-
ceived intensity of the episode using a Likert scale from 1
(low intensity) to 5 (high intensity). Each laugh episode of
AVLC was evaluated globally with only one score. There
was no obligation to annotate all the available examples
(352 episodes). There was no time limitation for the an-
notation task. Participants could see each sample several
times. Once they had evaluated an episode and gone to an-
other one they could not change their previous score. The
episodes were displayed in random order. The whole set of
episodes was divided into subsets, each of them containing
the episodes corresponding to 4 subjects.
For the moment, 2 subsets of the whole database (i.e. 352
out of 995 episodes corresponding to 8 subjects) have been
annotated by 15 naive participants mainly from France and
Belgium, aged 24-40. Each episode has been annotated by
at least 3 and at most 6 coders. Overall agreement between
coders was fair: Krippendorff‘s alpha (Krippendorff, 2012)
was .66.
In total we collected 1661 answers. The distribution of the
intensity scores in the part of database annotated so far is
not uniform. Most of the episodes were evaluated as low
intense (see Figures 1 and 2). In more details, the lowest
intensity value was used 536 times, score 2 was used 512
times, 3 - 352, 4 - 222, and the maximal score has only been
given 39 times.

Figure 1: Laughs intensity annotations histogram

4. Data analysis
In this work we focused on two research questions:

• T1) the relation between the perceived intensity and
certain audio and/or visual features,

Figure 2: Number of episodes for each degree of intensity

• T2) the relation between the respiration phases and
certain audio and/or visual features.

Task T1. The first task relies on the annotation of perceived
intensity of laughter (see Section 3.). We aim to discover
audio and visual features that correlate with the different
degrees of intensity. For each episode we extract several
distances between markers that correspond to some action
units (Ekman and Friesen, 1978) as well as low-level acous-
tic descriptors. We are particularly interested in the audio
and visual features that can be associated with the intense
laughs (such as maximum mouth opening).
Task T2. The second task relies on the annotation of res-
piration phases in the laughter episodes. Respiration has
an important role in the multimodal laughter expression.
We expect that information about respiration is crucial to
achieve believable audiovisual laughter synthesis: indeed,
humans can naturally distinguish these respiration phases
when listening or watching to a laugh. The audiovisual sig-
nals of the two respiration phases must thus present differ-
ent patterns. If so, this information can be later used to drive
the audio and visual synthesis modules with a common res-
piration input signal, ensuring the synchronization between
the characteristic audio and visual patterns of the two res-
piration phases. To verify this hypothesis, we analyze the
relation between the respiration phases and our audio and
visual features and we check if these features take different
values in the two respiration phases.
The extracted characteristics are 12 distances correspond-
ing to some facial actions and 58 acoustic low-level de-
scriptors:

• Facial actions are characterized by distances between
the markers in the motion capture data. The computed
distances correspond to jaw movement (D1), lip height
(D2), lip width (D3), cheek raising (D4-5), upper lip
protrusion (D6), lower lip protrusion (D7), lip cor-
ner movement (D8-9), frown (D10-12). The measure-
ments D4-D5 and D8-D9 roughly correspond to action
units considered to be specific for the facial expression
of hilarious laughter, namely cheek raising - AU 6 and
smile (lip corner up) - AU 12. The remaining mea-
surements correspond to the action units which occur-
rence in certain laughs is optional or it is still discussed



(Drack et al., 2009) such as AU4 (frowning) or AU 25
(mouth opening) and AU 26 (dropping the jaw). All
these characteristics are computed at 25 FPS.

• Acoustic low-level descriptors can be divided into 3
categories: spectral low-level descriptors, measures of
the noise level and prosody-related low-level descrip-
tors. Spectral low-level descriptors are 13 MFCCs (as
well as their first and second order derivatives), spec-
tral centroid, spectral spread, spectral decrease, spec-
tral flux and spectral variation. Measures of noise are
obtained with Harmonic to Noise ratios (HNR, 4 val-
ues corresponding to the frequency bands 250-500Hz,
500-1000Hz, 1000-2000Hz and 2000-4000Hz), spec-
tral flatness (4 values also), cepstral peak prominence,
chirp group delay and zero crossing rate. Finally,
prosody-related low-level descriptors include mea-
sures of energy and fundamental frequency. Further
details about these low-level descriptors can be found
in (Drugman et al., 2011; Peeters, 2003). All these
acoustic low-level descriptors were extracted from the
16kHz audio signals, using windows of 512 samples
(32ms) shifted by 160 samples (10ms).

For each considered segment (full episode and respiration
phase respectively for Task T1 and T2), the frame by frame
low-level descriptors (in variable number, depending on the
duration of the segment) are mapped to a fixed-length fea-
ture vector with the help of the following functionals; min-
imum over the segment, max, range, mean, standard devi-
ation, skewness, kurtosis, percentage of time spent in the
upper quartile (%25), zero-crossing rate (ZCR). Since we
had 12 facial distances and 58 acoustic low-level descrip-
tors, we obtain a feature vector of 630 audiovisual features
per segment, plus the duration of the segment.

5. Results
We present the results based on the subset of the AVLC
corpus for which we have sufficient intensity annotations
(see Section 3.). Two subjects had to be removed from the
current study due to erroneous motion capture data. Conse-
quently, we had 1336 intensity annotations for the remain-
ing 249 laughs (from 6 subjects).

Figure 3: Correlation between median intensity and
MFCC0 range

5.1. Intensity and audio visual features

In task 1 we studied the relation between the perceived in-
tensity and several audio and visual features. Concerning
the audio features we found strong correlations between
several features and the median intensity annotated for each
laugh. Spectral features provide the strongest correlations,
as well as energy: MFCC0 presents a correlation coefficient
(ρ) with the laughter intensity above .8, while loudness is
slightly behind. Figures 3 and 4 show the best correlations
with the annotated intensity, obtained with MFCC0 range
and MFCC2 range, respectively. The detailed data for the
10 best audio descriptors and pitch are presented in Table 1.
We can see that the “range” functional is yielding the best
correlations for all these lew-level descriptors. Energy de-
scriptors (MFCC0, ∆MFCC0, ∆∆MFCC0 and Loud-
ness) are the most correlated with laughter intensity, fol-
lowed by descriptors of the spectral shape (spectral flatness
and MFCCs). Pitch, extracted through the ESPS method
available in Wavesurfer (Sjölander and Beskow, 2011), is
slightly below.

Figure 4: Correlation between median intensity and
MFCC2 range

Visual features give slightly lower correlation coefficients.
The strongest correlation was observed for the maximum
jaw (Figure 5) and lip openings, i.e. the distances D1
and D2, with the “max” functional computed on the whole
episode (ρ = .68 and .65, respectively).

Figure 5: Correlation between median intensity and jaw
opening



Table 1: Correlation between laughter median intensity and the 10 best acoustic descriptors (+ pitch)
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min -0.77 -0.79 0.20 -0.78 -0.71 -0.59 -0.72 -0.79 -0.75 0.22 -0.02
max 0.23 0.16 0.82 0.36 0.47 0.59 0.54 0.78 0.75 0.78 0.54
range 0.78 0.79 0.83 0.79 0.78 0.78 0.78 0.83 0.78 0.79 0.69
mean -0.56 -0.68 0.53 -0.48 -0.32 0.06 -0.11 -0.10 -0.07 0.57 0.30
std 0.66 0.71 0.67 0.69 0.62 0.63 0.68 0.66 0.63 0.69 0.55
skewness -0.57 -0.57 0.07 -0.45 -0.45 -0.23 -0.39 0.40 -0.22 0.41 0.21
kurtosis 0.44 0.40 0.10 0.25 0.36 0.29 0.31 0.45 0.55 0.41 0.39
ZCR -0.61 -0.67 -0.22 -0.52 -0.32 -0.43 -0.57 -0.22 -0.27 -0.10 -0.14
%25 0.59 0.62 -0.40 0.20 0.05 -0.02 0.00 -0.49 -0.41 -0.55 0.13

Strong correlation was also observed for maximal lower lip
protrusion (D7) (ρ = .60). All these three measures re-
ceived comparable strong correlations when computed as a
mean for whole episodes. On the other hand these three dis-
tances correspond to the activation of the action units AU
25 and AU 26. This might suggest that the perceived de-
gree of the intensity is correlated with the mean and maxi-
mal activation of AU 25/26 and, in other words, with the
mouth opening. Similar relations were not observed for
other action units that occur in laughter expressions. In-
deed, in our test the correlation between the perceived in-
tensity and the measures D4 and D5 was weak (ρ = .33
and .43). It suggests that the intensity of the orbicularis
oculi activity (i.e. AU6) is not related to the perceived in-
tensity. However it does not mean that this activity was
not observed in the dataset. Similarly we did not observe
a relation between the measurements corresponding to AU
12 and the perceived intensity. Indeed, the correlation be-
tween perceived intensity and the measurements D3, D8,
and D9 was only slightly higher (0.33-0.48 for maximum
functional, and 0.31 - 0.43 for mean functional) than for the
distances corresponding to AU 6. Finally, frowning is even
less correlated with the perceived intensity. The observed
correlation for the maximal value of the measurement D12
is 0.37. The detailed data are presented in Table 2.

Figure 6: Correlation between median intensity and laugh-
ter duration

Interestingly, the overall duration of the laugh is not

strongly correlated (ρ = .54) with the perceived intensity
(Figure 6). In other words, an intense laugh does not nec-
essarily last long, and vice-versa.
These results show us that some audio and/or visual fea-
tures are strongly related to the perceived intensity of
laughs. Hence these features are both good candidates to
predict laughter intensity, and helpful to synthesize laughs
with the desired intensity.

5.2. Intensity and respiration phases
In task 2 we studied the relation between the perceived in-
tensity and the respiration phases. In total, the 249 laughs
contain 419 exhalation phases and 190 inhalation phases.
For each feature, we compare its distributions in inhala-
tion and exhalation phases. A Lilliefors test showed that
most of the features do not follow a Gaussian distribution;
hence a Kolmogorov-Smirnov test was preferred to a t-test
to compare the feature distributions over the 2 classes. The
Kolmogorov-Smirnov test yielded in highly significant dif-
ferences in the distributions of the 2 classes, for most of
the audiovisual features. Figures 7 and 8 present the distri-
butions, for the two classes, of 4 different features. These
experiments illustrate that audiovisual features present dif-
ferent patterns in exhalation and inhalation laughter phases,
which confirms our expectations since it is easy for humans
to distinguish these phases. These features can be used
for segmenting respiration phases in laughter and analyz-
ing their differences.

6. Future works
In this paper we analyzed audio and visual features of spon-
taneous laughter expressive behavior. First of all we de-
scribed the intensity annotation of an AVLC audiovisual
corpus of spontaneous laughter. We also studied the re-
lation between audio and visual cues of laughter and the
perceived laughter intensity, as well as between the audio
and visual features and laughter inhalation and exhalation
phases.
Several limitations of this work should be noted. First
of all the manual annotation of phase respirations can be
only roughly done from the audio and/or visual channel.
In future we plan to extend our work by using respiration
sensor data to increase the segmentation accuracy. Sec-
ondly the referred results depend strongly on the choice of



Table 2: Correlation between laughter median intensity and the distances
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

min 0.39 0.32 0.12 0.19 0.11 0.17 0.26 0.15 0.19 -0.08 -0.10 0.08
max 0.68 0.65 0.48 0.28 0.30 0.20 0.60 0.43 0.33 0.12 0.01 0.37
range 0.52 0.48 0.46 0.43 0.44 0.40 0.54 0.3 0.36 0.19 0.15 0.23
mean 0.64 0.61 0.43 0.26 0.26 0.19 0.54 0.4 0.31 0.04 -0.03 0.29

the episodes, the segmentation method and the context in
which the data were collected. Thus, we plan to use data
from different video-corpuses to confirm our results. It is
particularly important to study the relation between the per-
ceived intensity, some characteristics such as occurrence of
AU6 and the type of laughter (social, hilarious). Last but
not least the intensity annotation score corresponds to the
whole episode but continuous annotation might be more in-
formative as the intensity may not be constant during the
laughter episode.
This is an ongoing work. Future works will consist in the
more detailed annotation of the existing corpus, more de-
tailed data analysis and finally building laughter models.
First of all we plan to extend the intensity annotation of our
video-corpus. We will annotate separately the audio and
video channels using the same protocol as the one used in
Section 3. We are particularly interested in the relation be-
tween the evaluation of the single modalities and the overall
perception of the intensity. Taking into consideration that
laughter episodes are often silent (at least in some phases),
this work will give us more knowledge about the role of
single modalities in laughter episodes.
Secondly, we are currently investigating the relation be-
tween facial actions and the produced laughter sounds,
which will also help the synchronized audiovisual laughter
synthesis, by looking at the relationship between the anno-
tated vowel-like phones of the AVLC corpus and the shape
of the mouth.
Thirdly, after finishing the annotation we discussed with
some annotators about the task they had worked on. From
these free discussions we observed that our annotators were
often trying to evaluate laughter intensity in a subject-
dependent way: they evaluated some laughs as relatively
intense, i.e. intense when considering that specific person,
even if they were not explicitly requested to do so. Our
hypothesis is that, while coders may evaluate inter-subject
intensity in the first episodes of laughter for a given sub-
ject, they rather evaluate the intra-subject intensity when
the number of episodes increases. This hypothesis needs
to be verified in future works. We ignore this factor in the
analysis presented here.
Finally, the results presented here provide new insight for
laughter synthesis. We have a better idea of how audiovi-
sual features are related to laughter intensity and respiration
phases. We can also use these results for actual prediction
of laughter intensity and segmentation of inhalation and ex-
halation phases.
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Figure 7: Distribution of mean Chirp Group Delay and mean Zero-Crossing Rate for exhalation and inhaltion laughter
phases

Figure 8: Distribution of mean HNR1 range and zero-crossing rate of AU6 for exhalation and inhalation laughter phases


