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Abstract. In this paper, we focus on the development of new methods
to detect and analyze laughter, in order to enhance human-computer
interactions. First, the general architecture of such a laughter-enabled
application is presented. Then, we propose the use of two new modali-
ties, namely body movements and respiration, to enrich the audiovisual
laughter detection and classification phase. These additional signals are
acquired using easily constructed affordable sensors. Features to charac-
terize laughter from body movements are proposed, as well as a method
to detect laughter from a measure of thoracic circumference.
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1 Introduction

Laughter is an important signal in human communication. It can convey emo-
tional messages, but is also a common back-channeling signal, indicating, for
example, that we are still actively following the conversation. In dyadic conver-
sations, each participant laughs, on average, every 2 minutes [1]. Recent works
have also discovered the positive impact of a laughing virtual agent on users
experiencing human-machine interactions [2].

Our long-term objective is to integrate laughter into human-machine inter-
actions, in a natural way. This requires building an interactive system able to
efficiently detect human laughter, analyze it and synthesize an appropriate re-
sponse. The general system architecture of our application is displayed in Figure
1. We distinguish 3 types of components: input components, decision components
and output components.

The input components are responsible for multimodal data acquisition and
real-time laughter analysis. In our previous experiments [2], only the audio
modality was used for laughter detection. This resulted in two types of detec-
tion errors: a) false alarms in presence of noise; b) missed detections when the
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Fig. 1. Overall architecture composed of input components (in yellow), decision com-
ponents (in blue) and output components (in green).

laugh is (almost) silent. This is why in this work we are introducing new modal-
ities to make the laughter detection more robust. The input components now
include laughter detection from body movements and respiration in addition to
audio detection and intensity estimation. The data on user behavior (see Table
1) are captured with two devices: a simple webcam and the respiration sensor
developed at University College London (see Section 4).

Table 1. Recorded signals.

Recording device Captured signal Description
Webcam Video RGB, 25 fps

Audio 16 kHz, 16 bit, mono
Respiration Sensor Respiration 120Hz, 8 bit

The laughter-enabled decision making modules decide, given the information
from the input components, when and how to laugh so as to generate a natural
interaction with human users. At the moment, two decision components are
used to decide the agent audiovisual response. The first one (Dialog Manager)
receives the information from the input components (i.e., laughter likelihoods
and intensity) as well as contextual information and it generates the instruction
to laugh (or not) with high-level information on the laugh to produce (i.e., its
duration and intensity). The second component, Laughter Planner, controls the
details of the expressive pattern of the laughter response by choosing, from the
lexicon of pre-synthesized laughter samples, the most appropriate audiovisual
episode, i.e. the episode that best matches the requirements specified by the
Dialog Manager module.

Finally, the output components are responsible for the audiovisual laughter
synthesis that generates avatar laugher when the decision components instruct
them to do so. For this purpose two different virtual characters are used: Greta
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Realizer [3] and Living Actor by Cantoche!. At the moment the acoustic and
visual modalities of laughter are synthesized separately using the original au-
diovisual signals from the AVLaughterCycle (AVLC) corpus of human laughter
[4]. All synthesized episodes are stored in the agent lexicon, and can then be
displayed in real-time. In more details, audio is synthesized with the use of the
HMM-based Speech Synthesis System (HTS). HMMs have been trained on the
AVLC database and its phonetic annotations [5]. The facial animation in the
Greta Realizer was created with two different approaches [6]. First, a procedu-
ral approach was used: the AVLC videos were manually annotated with FACS
[7], then the animations were resynthesized with the Greta system, able to con-
trol the intensity and duration of each action unit. The second approach - a
data-driven synthesis - was realized by applying a freely available face tracker to
detect facial landmarks on the AVLC videos and then by mapping these land-
marks displacements to the facial animation parameters of the virtual character.

The facial animation of Living Actor virtual characters is similar to speech
synthesis, where information about phonemes or visemes is sent by the Text
to Speech engine along with the audio signal. For laughter, the visemes are
composed of lip deformation but also cheek and eye movements. Pseudo-phoneme
information is sent using a chosen nomenclature of sounds depending on the
synthesis functions. Figure 2 displays examples of laughter poses.

Expiration

<?xml version="1.0" encoding="iso-8859-1" 7>

<LiwvingActor>

<item ti.me_offset-"ﬂ..?i’j‘" ma_:ph_namz".l‘..augh_ﬂ'um" intensity="1"/>
<item time offset="0, 521" morph name="Laugh a" intensity="0.5"/>
<item time offset="2.180" morph name="Laugh a" intensity="0.3"/>
<item time offset="3" morph_name="Laugh a" intensity="0.1"/>
</LivingRActor>

Fig. 2. Using laughter visemes for facial animation

A demo of the system can be viewed at https://www.youtube.com/watch?
v=fE1P2_c8vJU. Further details on the components (acoustic laughter detection,
decision and audiovisual synthesis), the communication middleware as well as
experimental results can be found in [2].

The rest of this paper focuses on the new input components of our system,
with the objective of improving laughter detection robustness through multi-
modal decisions. In Section 2 we present related work for laughter detection.
Section 3 discusses laughter detection from body cues while Section 4 shows

! http://www.cantoche.com
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how we can use respiration which is a very important element of laughter ex-
pressive pattern. Finally, Section 5 presents the conclusions and future works.

2 Related work

In the last decade, several systems have been built to detect laughter. It started
with audio-only classification. Kennedy and Ellis [8] obtained 87% accuracy
with Support Vector Machines fed with 6 MFCCs; Truong and van Leeuwen
[9] reached slightly better results (equal error rate of 11%) with Neural Net-
works fed with Perceptual Linear Prediction features; Knox and Mirghafori [10]
obtained better performance (around 5% error) by using temporal feature win-
dows.

In 2008, Petridis and Pantic started to enrich the so far mainly audio-based
work in laughter detection by consulting audio-visual cues for decision level
fusion approaches [11, 12]. They combined spectral and prosodic features from
the audio modality with head movement and facial expressions from the video
channel. They reported a classification accuracy of 74.7% to distinguish three
classes, namely unvoiced laughter, voiced laughter and speech.

Since laughter detection robustness increases when combining audio and fa-
cial features [12], including other modalities can probably further improve the
performance. First, the production of audible laughter is, in essence, a respiratory
act since it requires the exhalation of air to produce distinctive laughter sounds
(“Ha”) or less obvious sigh- or hiss-like verbalizations. The respiratory patterns
of laughter have been extensively researched as Ruch & Ekman [13] summarize.
A distinctive respiration pattern has emerged of a rapid exhalation followed by
a period of smaller exhalations at close-to-minimum lung volume. This pattern
is reflected by changes in the volume of the thoracic and abdominal cavities,
which rapidly decrease to reach a minimum value within approximately 1s [14].
These volumetric changes can be seen through the simpler measure of thoracic
circumference, noted almost a century ago by Feleky [15]. Automatic detection
of laughter from respiratory actions has previously been investigated using elec-
tromyography (EMG). Fukushima et al. [16] analyzed the frequency character-
istics of diaphragmatic muscle activity to distinguish laughter, which contained
a large high-frequency component, from rest periods, which contained mostly
low-frequency components. In this paper, we will explore automatic laughter
detection from the measure of the thoracic circumference (Section 4).

Second, intense laughter can be accompanied by changes in postures and
body movements, as summarized by Ruch [17] and Ruch & Ekman [13]. Throw-
ing the head backwards will ease powerful exhalations. The forced expiration
movements can cause visible vibrations of the trunk and shoulders. This is why
we propose features characterizing such laughter-related body movements, that
are presented in Section 3.
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3 Body analysis

The EyesWeb XMI platform is a modular system that allows both expert (e.g.,
researchers in computer engineering) and non-expert users (e.g., artists) to create
multimodal installations in a visual way [18]. The platform provides modules,
that can be assembled intuitively (i.e., by operating only with the mouse) to
create programs, called patches, that exploit system resources such as multi-
modal files, webcams, sound cards or multiple displays. The body analysis input
component consists of an EyesWeb XMI patch performing analysis of the user’s
body movements in real-time. The computation performed by the patch can be
split into a sequence of distinct steps, described in the following paragraphs.

Currently, the task of the body analysis module is to track the user’s shoul-
ders and characterize the variation of their positions in real-time. To this aim we
could use a sensor like Kinect to provide the user’s shoulders data as input to
our component. However, we observed that the Kinect shoulders’ position do not
consistently follow the user’s actual shoulder movement: in the Kinect skeleton,
shoulders’ position is extracted via a statistical algorithm on the user’s silhou-
ette and depth map and usually this computation cannot track subtle shoulder
movement, for example, small upward /downward movements.

This is why in this paper we present a different type of shoulder movement
detection technique: two small and lightweight green polystyrene spheres have
been fixed on top of the user’s shoulders. The EyesWeb patch separates the green
channel of the input video signal to isolate the position of the two spheres. Then
a tracking algorithm is performed to follow the motion of the sphere frame by
frame, as shown in Figure 3. However, the above technique can be used only in
controlled environments, i.e., it can not be used in real situations when users are
free to move in the environment. So we plan to perform experiments to compare
the two shoulder movement detection techniques: the one based on Kinect and
the one based on markers. Results will guide us in developing algorithms for
approximating user’s shoulder movement from Kinect data.

Fig. 3. Two green spheres placed on the user’s shoulders are tracked in real-time (red
and blue trajectories)
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Fig. 4. An example of Periodicity Index computation: the input time-series (on the
left) has a periodicity of 20 frames.

The position of each user’s shoulder is associated to the barycenter of each
sphere, which can be computed in two ways. The first consists in the computation
of the graphical barycenter of each sphere, that is, the mean of the pixels of each
sphere’s silhouette is computed. The second option includes some additional
steps: after computing the barycenter like in the first case, we consider a square
region around it and we apply a Lukas-Kanade [19] algorithm to this area. The
result is a set of 3 points on which we compute the mean: the resulting point
is taken as the position of the shoulder. From this shoulder tracking, several
laughter-related features can be computed:

— Correlation: The correlation p is computed as the Pearson correlation coeffi-
cient between the vertical positions of the user’s shoulders. Vertical positions
are approximated by the y coordinate of each shoulder’s barycenter.

— Kinetic energy: The kinetic energy is computed from the speed of user’s
shoulders and their percentage mass as referred by [20]:

F = %(mlvl —+ mQ'UQ) (1)

— Periodicity: Kinetic energy is serialized in a sliding window time-series hav-
ing a fixed length. Periodicity is then computed, using Periodicity Transforms
[21]. The time-series is decomposed into a sum of its periodic components by
projecting data onto periodic subspaces. Periodicity Transforms also output
the relative contribution of each periodic signal to the original one. Among
many algorithms for computing Periodicity Transforms, we chose mbest. It de-
termines the m periodic components that, subtracted from the original signal,
minimize the residual energy. With respect to the other algorithms, it provides
a better accuracy and does not need the definition of a threshold. Figure 4
shows an example of computation of the Periodicity Index in EyesWeb for a
sinusoidal signal affected by a uniform noise in the range [0, 0.6].

— Body Laughter Index: Body Laughter Index (BLI) stems from the combi-
nation of the averages of shoulders’ correlation and kinetic energy, integrated
with the Periodicity Index. Such averages are computed over a fixed range of
frames. However such a range could be automatically determined by applying
a motion segmentation algorithm on the video source. A weighted sum of the
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mean correlation of shoulders’ movement and of the mean kinetic energy is
carried out as follows:

BLI = ap+ BE 2)
As reported in [13], rhythmical patterns produced during laughter usually
have frequencies around 5 Hz. In order to take into account such rhythmical
patterns, the Periodicity Index is used. In particular, the computed BLI value
is acknowledged only if the mean Periodicity Index belongs to the arbitrary
range [%, %}7 where fps is the input video frame rate (number of frames

per second), 25 in our case.

Figure 5 displays an example of analysis of user’s laugh. A previously segmented
video is provided as input to the EyesWeb XMI body analysis module. The
green plot represents the variation of the BLI in time. When the BLI is ac-
knowledged by the Periodicity Index value the plot becomes red. In [22] we
present a preliminary study in which BLI is validated on a corpus of laugh-
ter videos. A demonstration of the Body Laughter Index can be watched on
http://www.ilhaire.eu/demo.

Fig. 5. An example of Body Laughter Index computation

4 Respiration

In order to capture the laughter-related changes in thoracic circumference (see
Section 2), we constructed a respiration sensor based on the design of commer-
cially available sensors: the active component is a length of extensible conduc-
tive fabric within an otherwise inextensible band that is fitted around the upper
thorax. Expansions and contraction of the thorax change the length of the con-
ductive fabric causing changes in its resistance. These changes in resistance are
used to modulate an output voltage that is monitored by the Arduino prototyp-
ing platform?. A custom written code on the Arduino converts the voltage to a
1-byte serial signal, linear with respect to actual circumference, which is passed
to a PC over a USB connection at a rate of approximately 120Hz.

While Fukushima et al. [16] designed a frequency-based laughter detection
module (from EMG signals), our approach is time-based. Laughter onset is iden-
tified through the appearance of 3 respiration events (see Figure 6):

2 http://www.arduino.cc/
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1. A sharp change in current respiration state (inhalation, pause, standard
exhalation) to rapid exhalation.

2. A period of rapid exhalation resulting in rapid decrease in lung volume.

3. A period of very low lung volume.
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Fig. 6. Example of thoracic circumference, with laughter episode marked in red, and
notable features of laughter initiation. Feature 1 - a sharp change in current respiration
state to rapid exhalation; feature 2 - a period of rapid exhalation; feature 3 - a period
of very low lung volume.

These appear as distinctive events in the thoracic circumference measure and
its derivatives:

1. A negative spike in the second derivative of thoracic circumference.
2. A negative period in the first derivative of thoracic circumference.
3. A period of very low thoracic circumference.

These were identified by calculating a running mean (Ay) and standard de-
viation (o) for each measure. A running threshold (7) for each measure was
calculated as: Ty = A\ —ayof, where oy is a coefficient for that measure, empir-
ically determined to optimise the sensitivity/specificity trade-off. Each feature
was determined to be present if the value of the measure fell below the thresh-
old at that sample. Laughter onset was identified by the presence of all three
features in the relevant order (1 before 2 before 3) in a 1s sliding window. This
approach restricts the number of parameters to 3 (a;—3) but does introduce lag
necessary for calculating valid derivatives from potentially noisy data. It also
requires a period for the running means and standard deviations, and so the
thresholds, to stabilise. However, this process would be jeopardised by the pres-
ence of large, rapid respiratory event such as coughs and sneezes. The robustness
of this detection module remains to be investigated, as well as what it can bring
in multimodal detection.
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5 Conclusion and future work

In this paper we have focused on the development of two new modalities to de-
tect and characterize laughs that are integrated in a broader, fully functional,
interactive application. These two modalities are affordable to include in multi-
modal systems and offer real-time monitoring. The proposed features are related
to laughter behavior and will provide useful information to classify laughs and
measure their intensity.

This is ongoing work. We will go on developing robust laughter detection.
For example, the rules for laughter detection from respiration features, currently
determined empirically, will be optimized in a larger study. In addition, other
modalities will be included, for example facial tracking. For this purpose we
plan to include another sensor, i.e. a Kinect camera. The latest version of the
Microsoft Kinect SDK not only offers full 3D body tracking, but also a real-time
3D mesh of facial features tracking the head position, location of eyebrows, shape
of the mouth, etc. Action units of laughter could thus be detected in real-time.

Secondly, our analysis components need formal evaluation. For this purpose
we have recently captured using our analysis components the data of more than
20 people participating in laughter-eliciting interactions. The collected data will
now be used to validate these components. In the future, we will also perform
a methodical study of multimodal laughter detection and classification (i.e.,
distinguishing different types of laughter), to evaluate the performance of each
modality (audio, face, body, respiration) and measure the improvements that can
be achieved by fusing modalities. The long term aim is to develop an intelligent
adaptive fusion algorithm. For example, in a noisy environment audio detection
should receive a lower importance.

This additional information will allow our decision components to better tune
the virtual character reactions to the input, and hence enhance the interactions
between the participant and the virtual agent.
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