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Forewords

The eNTERFACE’12 workshop was organized by the Metz’ Campus of Supélec and co-sponsored
by the ILHAIRE and Allegro European projects.

The previous workshops in Mons (Belgium), Dubrovnik (Croatia), Istanbul (Turkey), Paris
(France), Genoa (Italy), Amsterdam (The Netherlands) and Plzen (Czech Republic) had an im-
pressive success record and had proven the viability and usefulness of this original workshop. eN-
TERFACE’12 hosted by Supélec in Metz (France) took this line of fruitful collaboration one step
further. Previous editions of eNTERFACE have already inspired competitive projects in the area
of multimodal interfaces, has secured the contributions of leading professionals and has encouraged
participation of a large number of graduate and undergraduate students.

We received high quality project proposals among which the 8 following projects were selected.

1. Speech, gaze and gesturing - multimodal conversational interaction with Nao robot
2. Laugh Machine

3. Human motion recognition based on videos

4. M2M -Socially Aware Many-to-Machine Communication

5. Is this guitar talking or what!?

6. CITYGATE, The multimodal cooperative intercity Window

7. Active Speech Modifications

8. ArmBand : Inverse Reinforcement Learning for a BCI driven robotic arm control

All the projects resulted in promising results and demonstrations which are reported in the
rest of this document. The workshop gathered more than 70 attendees coming from 16 countries
all around Europe and even further. We received 4 invited speakers (Laurent Bougrain, Thierry
Dutoit, Kristiina Jokinen and Anton Batliner) whose talks were greatly appreciated. The work-
shop was held in a brand new 800 m2 building in which robotics materials as well as many sensors
were available to the attendees. This is why we proposed a special focus of this edition on topics
related to human-robot and human-environment interaction. This event was a unique opportunity
for students and experts to meet and work together, and to foster the development of tomorrow’s
multimodal research community.

All this has been made possible thanks to the the good will of many of my colleagues who
volunteered before and during the workshop. Especially, I want to address many thanks to Jérémy



who did a tremendous job for making this event as enjoyable and fruitful as possible. Thanks a lot
to Matthieu, Thérese, Daniele, Jean-Baptiste, Senthil, Lucie, Edouard, Bilal, Claudine, Patrick,
Michel, Dorothée, Serge, Calogero, Yves, Eric, Véronique, Christian, Nathalie and Elisabeth. Or-
ganizing this workshop was a real pleasure for all of us and we hope we could make it a memorable
moment of work and fun.

Olivier Pietquin

Chairman of eNTERFACE’12
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The eNTERFACE’12 Sponsors

We want to express our gratitude to all the organizations which made this event possible.
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Speech, gaze and gesturing: multimodal
conversational interaction with Nao robot

Adam Csapo, Emer Gilmartin, Jonathan Grizou, JingGuang Han, Raveesh Meena, Dimitra Anastasiou,
Kristiina Jokinen, and Graham Wilcock

Abstract—The report presents a multimodal conversational
interaction system for the Nao humanoid robot, developed by
project P1 at eNTERFACE 2012. We implemented WikiTalk, an
existing spoken dialogue system for open-domain conversations,
on Nao. This greatly extended the robot’s interaction capabilities
by enabling Nao to talk about an unlimited range of topics. In
addition to speech interaction, we developed a wide range of
multimodal interactive behaviours by the robot, including face-
tracking, nodding, communicative gesturing, proximity detection
and tactile interrupts. We made video recordings of user interac-
tions and used questionnaires to evaluate the system. We further
extended the robot’s capabilities by linking Nao with Kinect.

Index Terms—human-robot interaction, spoken dialogue sys-
tems, communicative gesturing.

I. INTRODUCTION

The report presents a multimodal conversational interaction
system for the Aldebaran Nao humanoid robot, developed
by project P1 at eNTERFACE 2012. Our project’s starting
point was a speech-based open-domain knowledge access
system. By implementing this system on the robot, we greatly
extended Nao’s interaction capabilities by enabling the robot
to talk about an unlimited range of topics. In addition to
speech interaction, we developed a wide range of multimodal
interactive behaviours by the robot, including face-tracking,
nodding, communicative gesturing, proximity detection and
tactile interrupts, to enhance naturalness, expressivity, user-
friendliness, and add liveliness to the interaction.

As the basis for speech interaction, we implemented on
Nao the WikiTalk system [1], [2], that supports open-domain
conversations using Wikipedia as a knowledge source. Earlier
work with WikiTalk had used a robotics simulator. This report
describes the multimodal interactive behaviours made possible
by implementing “Nao WikiTalk” on a real robot.

Based on the above, the Nao robot with Nao WikiTalk can
be regarded as a cognitive robot, since it can reason about how
to behave in response to the user’s actions. However, in the
broader sense, the combination of Nao and WikiTalk is also
viewed as a cognitive infocommunication system, as it allows
users to interact via the robot with Wikipedia content that is
remote and maintained by a wider community.

This report was published at CogIlnfoCom 2012 [3].

A. Csapo is with Budapest University of Technology and Economics.

E. Gilmartin and J. Han are with Trinity College Dublin.

J. Grizou is with INRIA, Bordeaux.

R. Meena is with KTH, Stockholm.

D. Anastasiou is with University of Bremen.

K. Jokinen and G. Wilcock are with University of Helsinki. e-mail:
kristiina.jokinen @helsinki.fi, graham.wilcock @helsinki.fi.

The report is structured as follows. Section II explains the
multimodal capabilities that we developed for Nao, focussing
on communicative gesturing and its integration with speech
interaction. Section III describes the system architecture and
Section IV presents an evaluation of the system based on ques-
tionnaires and video recordings of human-robot interactions.
Finally, Section V introduces the use of Kinect with Nao to
further extend interaction functionality.

II. MULTIMODAL CAPABILITIES

Human face-to-face interaction is multimodal, involving
several input and output streams used concurrently to transmit
and receive information of various types [4]. While proposi-
tional content is transmitted verbally, much additional infor-
mation can be communicated via non-verbal and paralinguistic
audio (Cum’s and ’ah’s in filled pauses, prosodic features),
and visual channels (eye-gaze, gesture, posture). These non-
verbal signals and cues play a major part in management of
turn-taking, communicating speaker and listener affect, and
signaling understanding or breakdown in communication.

During interaction speakers and listeners produce bodily
movements which, alone or in tandem with other audio and
visual information, constitute cues or signals which aid under-
standing of linguistic information, signal comprehension, or
display participants’ affective state. Movements include shifts
in posture, head movements, and hand or arm movements. We
take ’gesture’ to include head and hand or arm movements.

A. Gestures

Nao Wikitalk was designed to incorporate head, arm and
body movements to approximate gestures used in human
conversation. This section describes the motivation for adding
gestures to Nao, and their design and synthesis. A more
comprehensive description of enhancing Nao with gestures and
posture shifts can be found in [5].

Gestures take several forms and perform different functions.
Following [6], we can distinguish commands and commu-
nicative gestures, and the latter can be categorized further
as speech-independent (emblems -’ok’ sign) or speech de-
pendent (gestures accompanying speech). Speech dependent
gestures may be iconic or metaphoric - “the fish was this
big” with hands apart to show dimension, a palm-upward
"giving’ gesture at start of narration. They may also be deictic
(pointing to real or virtual objects) or beat gestures (simple
flicks which mark time on speech) [7]. Nods and eye gaze
movements are also visual cues to turn-taking management and
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Gesture Purpose

Description

Open hand palm up Presentation of new paragraph

The gestures mimics the offering of information to the subject.

Open hand palm vertical | Presentation of new information

Up and down movement to mark new piece of information.

Head nod down Indicating end of sentence

Upon seeing links in a sentence. To mark new info.

Head nod up Indicating surprise

On being interrupted.

Speaking to standing Listening mode

Nao goes to standing pose and listens to speaker.

Standing to speaking Speaking mode

Nao goes to speaking pose when speaking.

TA

LET

NON-VERBAL GESTURES AND THEIR ROLE IN INTERACTION WITH NAO

comprehension in speakers and listeners with listeners nodding
feedback, and speakers using upsweeps and gazing at listeners
to check understanding and invite contributions/feedback [8].

Nao Wikitalk allows the user to query Wikipedia via the
Nao robot and have chosen entries read out by the robot. In
a text-free environment the user needs to infer the structure
of the article from the robot’s output - Wikipedia entries are
large blocks of text which can be very monotonous when
simply read out by a synthetic voice, and comprehension
could be enhanced by adding non-verbal cues to discourse
level organization of the text. In Wikipedia relevant infor-
mation is marked with hyperlinks to other entries. A system
where the robot could signal these links non-verbally while
reading the text would allow the user to further query the
encyclopedia without recourse to explicit menus. Gesture and
posture changes could also be used to help manage turntaking
in Nao’s dialogue, while the inclusion of gesture in Nao’s
conversational repertoire would also enhance expressivity and
add liveliness to the interaction.

As a first step towards adding these functionalities to Nao,
we identified a set of gestures which could be used to:

o Mark discourse level details such as paragraph and sen-
tence boundaries.

o Indicate hyperlinks

« Help manage turntaking

o Add expressivity or liveliness

Table I provides an overview of the chosen gesture set.

B. Gesture synthesis

Gestures are performed as a sequence of actions, the most
prominent of which is the key pose, which captures the
essence of the gesture and conveys much of its communicative
payload. The approach taken to gesture synthesis in Nao was
to create an animation sequence which could start at any body
pose, move to the key pose or action core, and then continue
to a follow-up pose which would complete the gesture.

The gesture synthesis process began with the isolation of
key poses in the gestures. These key poses were then created
in the Nao manually and their parameters recorded using Nao’s
Choregraphe animation software. The key poses that we have
defined for the purpose of this work are shown in Figures A
to G in Figure 1. To illustrate, Figure C specifies the key pose
for the open hand palm up gesture.

The gestures were then created using Choregraphe’s stop
motion animation tools to interpolate the position of the robot’s
joints between the poses comprising the gesture. For example,
the open hand palm up gesture for paragraph beginning

was synthesized as an interpolated animation of the follow-
ing sequence of key poses: Standing— Speaking— Open-hand
Palm-up—Speaking. In a similar fashion an emphatic beat
gesture was synthesized as an interpolated animation of the se-
quence: Speaking— Open-hand Palm-vertical— Speaking. The
sequence Open-hand Palm-vertical—Speaking could be ani-
mated in a loop for synthesizing rhythmic beat gestures for a
sequence of new information. The gestures thus created could
then be programmed into the robot for later performance.

Fig. D: Open-hand
Palm-vertical
key pose

Fig. A: Standing  Fig. B: Speaking
key pose key pose

Fig. C: Open-hand
Palm-up key pose

Fig. G: Open arms open
hand palm up key pose

Fig. E: Head down Fig. F: Head up
key pose key pose

Fig. 1. Key poses.

During the animation process it became evident that the
animation software did not accurately reflect the timing of
gestures when performed by the robot rather than onscreen.
This reflects the mechanical limitations of the motors of the
robot. In order to better control the timing of gestures and
to add flexibility to the robot dynamics we obtained the
corresponding Python code for each gesture and defined the
gestures as parameterized functions. In this way gesture du-
ration and speed could be finely controlled from the Wikitalk
code rather than called as monolithic action sequences.

C. Synchronizing gestures with speech

The gesture sequences created for the Nao accompany
speech. To create an illusion of coherence requires fine timing
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control and synchronization of the gesture with the relevant
utterance - ideally aligning the gesture peak with the pitch
accent of the marked word or phrase. A model for this
sophisticated synthesis could not be explored given the rather
short duration of the workshop. Instead we took the approach
of synthesizing gestures with rather generic parameters so that
they would not be perceived completely out of place.

In the system, gesture is controlled by a Gesture Manager
(GM). The GM first identifies the relevant gesture for the
planned utterance, using contextual details such as the status of
discourse, the dialogue context and the contextual information
in the article. The GM marks up the utterance to be spoken
with tags containing information about the type of gesture that
is to be triggered. The utterance and accompanying gesture
are then created by the speech and the gesture synthesis
components and sent to be executed by the robot.

The system currently includes gestures to mark discourse
and structural features in the spoken text, and to signal
the presence of new information at hyperlinks, both adding
liveliness to the dialogue. We had intended to explore the turn
taking mechanism in dialogue using gestures and gaze, but the
Nao speech recognizer did not allow barge-in, in effect forcing
the user to wait for a "beep’ before responding. Therefore,
although the presence of a natural upsweep of the head at
turn ceding by the Nao worked very well in prompting the
user to speak, it was counterproductive in the Nao’s current
implementation as the user would speak ’before the beep’
and thus before ASR had been enabled, confusing rather
than enhancing the interaction. It was also noted that the
motors were not always fast enough to produce gestures at
the precise time indicated. Both of these problems are the
result of engineering limitations, and it is highly likely that
newer robots will offer improved performance, allowing a
fuller range of gesture to be implemented in the system, and
improving the timing of currently implemented gestures.

D. Face detection, tactile sensors, and non-verbal cues

As non-verbal information is vital in human face to face
interaction, it is desirable for an anthropomorphic embodied
conversational agent (ECA) to have facilities to synthesise and
recognize non-verbal audio and visual information in addition
to its speech synthesis and recognition modules. In this section
we summarise the different methods and technologies that we
studied for the Nao WikiTalk. The studies and experiments are
discussed in more detail in [9].

The Nao platform provides several built-in technologies to
enable non-verbal human-robot interaction. Using the Viola-
Jones algorithm [10], Nao can detect faces and track people
as well as detect the user’s head movements like nodding
and shakes. However, these capabilities interfere with other
modules that send commands to the same motor, e.g. requests
to nod, and the head movement appears ‘“jerky” due to
conflicting signals. We overcame this problem by deploying
conflicting modules into separate threads.

We explored the use of sonar sensors and speech direction
detection as conversation triggers. The robot can infer if there
are users close by who may want to start a conversation.

Using sonar sensors, we recorded the distance between
humans and robots in interactive situations, and could thus
empirically test what is the optimal distance for human-robot
interactions. In our setup, the best communication distance is
about 0.9 meters.

Finally, we investigated different methods for interrupting
the conversation, using tactile sensors and an object recogni-
tion method. The sensor on Nao’s head was adopted as the
most reliable method: when the user wants to interrupt Nao’s
speaking, he or she simply touches the robot on his head.

III. SYSTEM ARCHITECTURE

An overview of the system architecture is shown in Figure 2.
At the heart of the system is a conversation manager, which
consists of a finite state machine, and a number of interactive
extensions that store various parameters of the user’s past in-
teractions and influence the functionality of the state machine
accordingly. The conversation manager communicates with a
Wikipedia manager on the one hand (so as to be able to obtain
appropriately filtered text from Wikipedia), and a Nao manager
on the other (so as to be able to map its states onto the actions
of the Nao robot).

In order to enable the Nao robot to react to various
events while reading text from Wikipedia, the Nao manager
is capable of registering events and alerting the appropriate
components of the system when anything of interest (either
on the inside or the outside of the system) occurs. Figure 2
shows three examples of event handling within the Nao Talk
module (the class which implements this module is directly
connected to the Nao robot and drives its speech functionality).
Functions isSaying(), startOfParagraph(), and endOfSentence()
are all called periodically by the Nao manager, and return
True whenever the robot stops talking, reaches the start of
a paragraph, or finishes a sentence, respectively. Whenever
such events occur, the Nao manager can trigger appropriate
reactions, for example, through the Gestures module.

A. Interactive extensions within the conversation manager

The history of the user’s interactions is stored in a statistics
structure within the conversation manager. Using a set of
simple heuristics, it is possible to create more interesting
dialogues between the user and the robot by:

« ensuring that the robot does not give the same instructions

to the user in the same way over and over again

« varying the level of sophistication in the functionalities

that are introduced to the user by the robot. For example,
in the beginning the robot gives simple instructions,
allowing the user to practice and understand the basic
functionalities of the system; for more advanced users,
the system suggests new kinds of use cases which may
not have previously been known to the user.

B. Events and event listeners in the Nao manager

As mentioned earlier, the Nao manager component is capa-
ble of registering and listening to events that occur either on
the outside of the system, or within the system. Internal events
related to speech synthesis include:
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getPreviousPara()

Conversation manager
(state machine)

Fig. 2. Overall view of the system architecture.

o The start of new paragraph within the text

o The end of a sentence within the text

o The end of a logically coherent part of the text (for
example, the end of a paragraph or a topic)

o The existence of a link within the text

External events related to the user’s actions include:

o The user’s proximity to the Nao robot’s sonar sensors
o The user touching any of the 3 tactile sensors on the head
of the Nao robot

The Nao manager can also be said to include implicit
event listeners, which are an integral part of the Nao robot
and need not be implemented explicitly by the developer.
Examples of event listeners of this type include the Nao robot’s
capability to detect the presence of the user, track the user’s
head movements, or recognize the direction of a sound (e.g.,
when the user claps or makes other noises).

I'V. USER EVALUATION

To evaluate the impact of the various gestures and body
movements exhibited by Nao during an interaction, we con-
ducted a user evaluation of the system. Subjects were asked
to take part in three 5-minute interactions. The subjects were
told that Nao can provide them information from Wikipedia.

We followed the evaluation scheme proposed in [11]. Users
were first asked to fill a questionnaire, which was designed to
gauge their expectations from the system. After the interaction
with the system the users filled in another questionnaire that
gauged their experience with the system. We evaluated the
system along the following dimensions: Interface, Responsive-
ness, Expressiveness, Usability and Overall experience. Before
their first interaction with the system each user filled in a

Wikipedia Manager

self.events = [...]
selflisteners = {...} |[T——
say() performGesureX()
isSaying() performGestureY()
startActions() .
actionSurveillance() startOfParagraph()
endOfSentence()
V2 Nao Talk Gestures
\ /; Nao Manager
/
‘%‘ / lookupTopic()
éétCurreﬂtPara()
\ <> getNextPara()
{

questionnaire about their expectations from the system. By
doing so we subtly primed the user’s attention to aspects of
the conversation we wanted to evaluate. After each of the three
interactions the users filled in another questionnaire regarding
their experience. For each question participants were asked
to provide their response on a five point scale (where 1:
Strongly disagree and 5: Strongly agree). Table II illustrates
the questionnaire for evaluating the user expectations and
experience on robot gestures and body movements.

Twelve users participated in the evaluation. All of them were
participants of the 8th International Summer Workshop on
Multimodal Interfaces, eNTERFACE-2012. The subjects were
given instructions to talk to Nao as much as they wish, and try
out how well it can present them with interesting information.
There were no constraints or restrictions on the topics. Users
could ask Nao to talk about almost anything. In addition to this
they were provided a list of commands to help them familiarize
with the interaction control.

Figure 3 provides an overview of user expectations and their
experiences on the questions presented in Table II. The user
evaluation is discussed in more detail in [12].

V. EXTENDING NAO WITH KINECT

Using Nao’s own speech, sensing and acting capabilities
makes the system easy to configure However we reached some
of the limits of the Nao abilities, especially when it comes to
detecting user behaviours Gesture recognition, gaze tracking
or multiple interlocutors detection are currently beyond the
embedded hardware and software of the Nao.

In order to enable more advanced interaction, we started
to develop Kinect-based tools that can gather more precise
data about the user’s behaviour at the cost of an additional
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System Aspect | Ref. | Expectation Experience

Interface 12 I expect to notice if Nao’s hand gestures are linked | I noticed Nao’s hand gestures were linked to explor-
to exploring topics. ing topic.

Interface 13 I expect to find Nao’s hand and body movement | Nao’s hand and body movement distracted me.
distracting.

Interface 14 I expect to find Nao’s hand and body movements | Nao’s hand and body movements created curiosity
creating curiosity in me. in me.

Expressiveness | El I expect Nao’s behaviour to be expressive Nao’s behaviour was expressive

Expressiveness | E2 I expect Nao will appear lively. Nao appeared lively.

Expressiveness | E3 I expect Nao to nod at suitable times Nao nodded at suitable times

Expressiveness | ES T expect Nao’s gesturing will be natural. Nao’s gesturing was natural.

Expressiveness | E6 T expect Nao’s conversations will be engaging Nao’s conversations was engaging

Responsiveness | R6 I expect Nao’s presentation will be easy to follow. Nao’s presentation was easy to follow.

Responsiveness | R7 T expect it will be clear that Nao’s gesturing and | It was clear that Nao’s gesturing and information
information presentation are linked. presentation were linked.

Usability Ul I expect it will be easy to remember the possible | It was easy to remember the possible topics without
topics without visual feedback. visual feedback.

Overall 02 T expect I will like Nao’s gesturing. I liked Nao’s gesturing.

Overall 03 I expect I will like Nao’s head movements. I liked Nao’s head movements.

TABLE IT
QUESTIONNAIRE FOR EVALUATING USER EXPECTATIONS AND EXPERIENCE WITH NAO.

User Expectations and Experiences with Nao

s
£}

- [
A KA W

o
CIRTINS

Iean Expectation Experjence Scores
]

Interface Eupi

Orvral

Fig. 3. User expectations and experiences with Nao.

external device. Microsoft Kinect is an inexpensive non-
invasive technology which by means of a standard camera and
a depth sensor is able to determinate the location of particular
body joints in a 3D space. This section explains how it could
be used to enhance the interaction with the Nao robot.

A. Application

Among the different potential applications of Kinect in our
system, we distinguish three categories : (1) information that
helps the robot understand the behaviour of the user and
enhance the interaction, (2) information that helps us evaluate
human-robot interaction during user experiments and (3) tools
that help us enhance the behaviour of the robot.

1) Enhancing interaction: The face tracking option provide
head orientation and position from which can be extracted an
approximation of the gaze of the user. This information can be
useful to detect if the user is bored during the interaction and
trigger adapted robot behaviours, such as ending the topic,
asking for a new topic... The skeleton tracking can be used
to detect if a person enters or leaves the room as well as
their position in the room. That could trigger welcome and
goodbye behaviour as well as focus the gaze of the robot in
the direction of the user. (Note that the face tracking ability
already included with Nao robots is limited to close range and

proper light interaction, the Kinect is more robust to ambient
condition and allows for a larger interaction area.) A gesture
recognition module using data from the Kinect [13] would
enable non-verbal communication between human and robot.
In our current set-up, the robot quite often uses confirmation
questions that can be boring for a user to verbally reply in the
long run. The kind of recognizable gestures we could think of
are nodding to say ’Yes’ or 'No’, arm movement to continue
or stop the current topic. We could also use gesture data to
focus the robot gaze towards the hands of the user when they
perform a gesture. Kinect’s multiple skeleton and face tracking
abilities can even extend this to a multi-users setting.

2) Tracking user behaviours: Similar data can be used to
track the user behaviour during an interaction in order to get
quantitative measurements of the gaze of the user, the user
restlessness, the talking position and so on.

3) Enhancing the behaviour of the robot: Using the Kinect,
one could also think of tele-operating the Nao robot, meaning
that the gesture of a human standing in front of a Kinect is
mapped to the body of the robot. This would decrease the
amount of work needed to develop gestures for the robot.
Instead of blind trial and error sessions using a graphical
representation of the joint evolution in time, one could directly
record a gesture by ’demonstrating’ it to the robot. [14]
investigates the creation of an affect space for emotional body
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language to be displayed by robots. The body postures were
generated by means of motion capture data. This work focuses
on static posture but can be extended to dynamic gesturing.
Finally, tele-operating the robot would make easier Wizard-
of-Oz experiments where the robot gestures are remotely
operated by an expert while a user experiment is running.

.
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Fig. 4. Double mean filtering of the Kinect data.

B. Teleoperating Nao upper body using Kinect

In order to teleoperate the robot we need to extract useful
angle values from the joint positions as well as to filter out
the noise in the data received by the Kinect.

1) Extracting useful data: In order to map data from the
Kinect to the Nao, we need to extract the corresponding angles
from the skeleton points gathered though the Kinect. Two
aspects have to be considered, (1) the angle measure have
to be independent to any other movement of the human and
(2) angles should correspond to one degree of freedom of
the robot. As gathered data are points in a three-dimensional
space, we have to choose the plane where points will be
projected for the angle measurement.

2) Mapping: Depending on the reference and positive and
negative direction, angles extracted from the Kinect data have
to be shifted and/or inverted as well as min/max constrained to
match with the particular Nao angle reference. This mapping
depends on the points chosen and the positive direction
defined. In our case we use a simple linear mapping from
Kinect angle to Nao angle. A non linear mapping could also
be used to have more precise movement in certain range.

3) Filtering: Data from Kinect are noisy. In order to get
a smooth mapping from human gestures to robot movements,
the noise has to be cancelled. Removing noise will add a delay
between data acquisition and actual movement on the robot.

As shown in Figure 4, we use two mean filters in a row.
For every new data from the Kinect, angles are computed and
pushed into a list. The mean from this list is used to compute
the corresponding Nao angle which is pushed into a second
list. The mean of this Nao angle list is used to control the
robot. The best buffer size was chosen by empirical tests.

If empty or incomplete data are received from the Kinect
(person left the room, Kinect obstruction), an empty value
is pushed into the Kinect angle list. This simple method
allows a smooth and yet reactive filtering. In addition, we set
fraction_of_max_speed to 0.5. This avoids the robot reaching
its current goal before receiving a new one (i.e. avoid shaky
movements) and has been evaluated by empirical tests.
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Abstract—The Laugh Machine project aims at endowing
virtual agents with the capability to laugh naturally, at the
right moment and with the correct intensity, when interacting
with human participants. In this report we present the technical
development and evaluation of such an agent in one specific
scenario: watching TV along with a participant. The agent
must be able to react to both, the video and the participant’s
behaviour. A full processing chain has been implemented, inte-
grating components to sense the human behaviours, decide when
and how to laugh and, finally, synthesize audiovisual laughter
animations. The system was evaluated in its capability to enhance
the affective experience of naive participants, with the help
of pre and post-experiment questionnaires. Three interaction
conditions have been compared: laughter-enabled or not, reacting
to the participant’s behaviour or not. Preliminary results (the
number of experiments is currently to small to obtain statistically
significant differences) show that the interactive, laughter-enabled
agent is positively perceived and is increasing the emotional
dimension of the experiment.

Index Terms—Laughter, virtual agent.

I. INTRODUCTION

AUGHTER is a significant feature of human commu-

nication, and machines acting in roles like companions
or tutors should not be blind to it. So far, limited progress
has been made towards allowing computer-based applications
to deal with laughter. In consequence, only few interactive
multimodal systems exist that use laughter in the interactions.
Within the long term aim of building a truly interactive
machine able to laugh and respond to human laughter, during
the eNTERFACE Summer Workshop 2012 we have developed
the Laugh Machine project.

This project had three main objectives. First of all we aimed
to build an interactive system that is able to detect the human
laughs and to laugh back appropriately (i.e., right timing, right
type of laughter) to the human and the context. Secondly, we

wanted to use the laughing agent to support psychological
studies investigating benefits of laughter in human-machine
interaction and consequently improve the system towards more
naturalness and believeability. The third aim was the collection
of multimodal data on human interactions with the agent-based
system.

To achieve these aims, we tuned and integrated several
existing analysis components that can detect laughter events as
well as interpreters that controlled how the virtual agent should
react to them. In addition, we also provided output components
that are able to synthesize audio-visual laughs. All these
components were integrated to work in real-time. Secondly,
we focused on building an interactive scenario where our
laughing agent can be used. In our scenario, the participant
watches a funny stimulus (i.e., film clip, cartoon) together
with the virtual agent. The agent is able to laugh, reacting
to both, the stimulus and the user’s behavior. We evaluated
the impact of the agent through user evaluation questionnaires
(e.g., assessing the mood pre and post experiments, funniness
and aversiveness ratings to both stimuli and agent behavior,
etc.). At the same time we were able to collect multimodal data
(audio, facial expressions, shoulder movements, and Kinect
depth maps) of people interacting with the system.

This report is organized as follows. First, related work is
presented in Section II. Then, the experimental scenarios are
outlined in Section III, so that the framework for developing
the technical setup is known. The data used for training the
components is presented in section IV. Section V shows the
global architecture of the Laugh Machine system. The next
sections focus on the components of this system: details about
the input components are given in Section VI, Section VII is
related to the dialog manager and the output components are
described in Section VIII. Then, the conducted experiments to
evaluate the system are explained in Section IX. The results of
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these experiments are discussed in Section X. Section XI refers
to the data that has been collected during the experiments.
Finally, Section XII presents the conclusions of the project.

II. RELATED WORK

Building an interactive laughing agent requires tools from
several fields: at least audiovisual laughter synthesis for the
output, and components able to detect particular events like
participant’s laughs and decide when and how to laugh. In
the following paragraphs we will present the main works in
audiovisual laughter recognition, acoustic laughter synthesis
and visual laughter synthesis, then the interactive systems
involving laughter that have already been built. Regarding a
decision component dealing with laughter as input and output,
to the best of our knowledge there is no existing work.

A. Audiovisual laughter recognition

In the last decade, several systems have been built to
distinguish laughter from other sounds like speech. It started
with audio-only detection. The global approach followed up
to now for discriminating speech and laughter is to compute
standard acoustic features (MFCCs, pitch, energy, ...) and
feed them into typical classifiers: Gaussian Mixture Models
(GMMs), Support Vector Machines (SVMs) or Multi-Layer
Perceptrons (MLPs). Kennedy and Ellis [1] obtained 87% of
classification accuracy with SVMs fed with 6 MFCCs; Truong
and van Leeuwen [2] reached slightly better results (equal
error rate of 11%) with MLPs fed with Perceptual Linear
Prediction features; Knox and Mirghafori [3] obtained better
performance (around 5% of error) by using temporal feature
windows (feeding the MLPs with the features belonging to the
past, current and future frames).

In 2008, Petridis and Pantic started to enrich the so far
mainly audio-based work in laughter detection by consulting
audio-visual cues for decision level fusion approaches [4]-
[6]. They combined spectral and prosodic features from the
audio modality with head movement and facial expressions
from the video channel. Results suggest that integrated infor-
mation from audio and video leads to improved classification
reliability compared to a single modality - even with fairly
simple fusion methods. They reported a classification accu-
racy of 74.7% to distinguish three classes, namely unvoiced
laughter, voiced laughter and speech. In [7] they present a
new classification approach for discriminating laughter from
speech by modelling the relationship between acoustic and
visual features with Neural Networks.

B. Acoustic laughter synthesis

Acoustic laughter synthesis is an almost unexplored domain.
Only 2 attempts have been reported in literature. Sundaram
and Narayanan [8] modeled the laughter intensity rhythmic
envelope with the equations governing an oscillating mass-
spring and synthesized laughter vowels by Linear Prediction.
This approach to laughter synthesis was interesting, but the
produced laughs were judged as non-natural by listeners.
Lasarcyk and Trouvain [9] compared laughs synthesized by

an articulatory system (a 3D modeling of the vocal tract) and
diphone concatenation. The articulatory system gave better
results, but they were still evaluated as significantly less
natural than human laughs. In 2010, Cox conducted an online
evaluation study to measure to what extent (copy-)synthesized
laughs were perceived as generated by a human or a computer
[10]. Laughs synthesized by the 2 aforementioned groups were
included in the study, as well as a burst-concatenation copy-
synthesized laughter proposed by UMONS, which obtained the
best results with almost 60% of the 6000 participants thinking
it could be a human laugh. Nevertheless, this number is far
from the 80% achieved by a true human laugh.

C. Visual laughter synthesis

The audio-synchronous visual synthesis of laughter requires
the development of innovative hybrid approaches that combine
several existing animation techniques such as data-driven
animation, procedural animation and machine learning based
animation. Some preliminary audio-driven models of laughter
have been proposed. In particular Di Lorenzo et al. [11] pro-
posed an anatomic model of torso respiration during laughter,
while Cosker and Edge [12] worked on facial animation during
laughter. The first model does not work in real-time while the
second is limited to only facial animation.

D. Laughing virtual agents

Urbain et al. [13] have proposed the AVLaughterCycle
machine, a system able to detect and respond to human laughs
in real time. With the aim of creating an engaging interaction
loop between a human and the agent they built a system
capable of recording the user’s laugh and responding to it with
a similar laugh. The virtual agent response is automatically
chosen from an audio-visual laughter database by analyzing
acoustic similarities with the input laughter. This database
is composed of audio samples accompanied by the motion
capture data of facial expressions. While the audio content is
directly replayed, the corresponding motion capture data are
retargeted to the virtual model.

Shahid et al. [14] proposed Adaptive Affective Mirror, a tool
that is able to detect user’s laughs and to present audio-visual
affective feedback, which may elicit more positive emotions in
the user. In more details, Adaptive Affective Mirror produces
a distortion of the audio-visual input using real-time graphical
filters such as bump distortion. These distortions are driven by
the amount and type of user’s laughter that has been detected.
Fukushima et al. [15] built a system able to increase users’
laughter reactions. It is composed of a set of toy robots that
shake heads and play preregistered laughter sounds when the
system detects the initial user laughter. The evaluation study
showed that the system enhances the users’ laughing activity
(i.e., generates the effect of contagion).

Finally, Becker-Asano et al. [16] studied the impact of
auditory and behavioral signals of laughter in different social
robots. They discovered that the social effect of laughter
depends on the situational context including the type of task
executed by the robot, verbal and nonverbal behaviors (other
than laughing) that accompany the laughing act [17]. They also
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claim that inter-cultural differences exist in the perception of
naturalness of laughing humanoids [16].

III. SCENARIOS AND STIMULUS FILM

In our evaluation scenario the virtual agent and its laughter
behavior were investigated. The experimental setup involved a
participant watching a funny video with a virtual agent visually
present on a separate screen. The expressive behavior of the
virtual agent was varied among three conditions, systemati-
cally altering the degree of expressed appreciation of the clip
(amusement) in verbal and non-verbal behavior, as well as
different degrees of interaction with the participant’s behavior.
The three conditions are:

o “fixed speech”: the agent is verbally expressing amuse-
ment at pre-defined times of the video

o “fixed laughter”: the agent is expressing amusement
through laughs at pre-defined times of the video

« “interactive laughter”: the agent is expressing amusement
through laughter, in reaction to both the stimulus video
and the participant’s behavior

Furthermore, participant related variables were assessed
with self-report instruments and allowed for the investigation
of the influence of mood and personality on the perception and
evaluation of the virtual agent. This allowed for the control of
systematic biases on the evaluation of the virtual agent, which
are independent of its believability (e.g., individuals with a
fear of being laughed at perceive all laughter negatively). The
impact of the agent was assessed by investigating the influence
of the session on participant’s mood, as well as by self-report
questionnaires assessing the perception of the virtual agent and
the participant’s cognitions, beliefs and emotions.

The stimulus film consisted of five candid camera pranks
with a total length of 8 minutes. The clips were chosen
by one expert rater who screened a large amount of video
clips (approximately 4 hours) and chose five representative,
culturally unbiased pranks sections of approximately 1 to 2
minutes length. All pranks were soundless and consisted of
incongruity-resolution humor.

IV. DATA USED FOR TRAINING

Several pieces of data have been used in the project, two
existing databases and two datasets specifically recorded to
develop Laugh Machine. These databases are briefly presented
in this section.

A. The SEMAINE database

The SEMAINE database [18] was collected for the
SEMAINE-project by Queen’s University Belfast with tech-
nical support of the HCI? group of Imperial College London.
The corpus includes recordings from users while holding
conversations with an operator who adopts in sequence four
roles designed to evoke emotional reactions. One of the roles
(Poppy) being happy and outgoing often invokes natural and
spontaneous laughter by the user. The corpus is freely available
for research purpose and offers high-audio quality, as well as,
frontal and profile video recordings. The latter is important as

it allows incorporation of visual features, which is part of the
future work of Laugh Machine.

Within Laugh Machine, the SEMAINE database has been
used to design a framework for laughter recognition (see
Section VI-B) and select the most relevant audio features for
this task.

Even though laughter is included as a class in the transcrip-
tions of the SEMAINE database, provided laughter annotation
tracks turned out to be too coarse to be used in the Laugh
Machine training process. Hence, 19 sessions (each about 4-
7 minutes long), which were found to include a sufficient
number of laughs, were selected and manually corrected.

B. The AVLaughterCycle database

Secondly, we used the AudioVisualLaughterCycle (AVLC)
corpus [19] that contains about 1000 spontaneous audio-visual
laughter episodes with no overlapping speech. The episodes
were recorded with the participation of 24 subjects. Each
subject was recorded watching a 10-minutes comedy video.
Thus it is expected that the corpus contains mainly amusement
laughter. Each episode was captured with one motion capture
system (either Optitrack or Zigntrack) and synchronized with
the corresponding audiovisual sample. The material was man-
ually segmented into episodes containing just one laugh. The
number of laughter episodes for a subject ranges from 4 to
82. The annotations also include phonetic transcriptions of the
laughter episodes [20].

Within Laugh Machine, the AVLaughterCycle database has
been used to design the output components (audiovisual laugh-
ter synthesis, see Section VIII).

C. Belfast interacting dyads

The first corpus recorded especially for Laugh Machine con-
tains human-human interactions when watching the stimulus
film (see Secton III). Two dyads (one female-female, one male-
male) were asked to watch the film. The two participants
were placed in two rooms; they watched the same film
simultaneously on two separate LCD displays. They could
also see the other participant’s reaction as a small window
with the other person view was placed on the top of the
displayed content. The data contains the closeup view of each
participant’s face, 90 degree views (all at S0FPS) of the half of
the body as well as audio tracks obtained from close-talk and
far-field microphones for each participant, sampled at 48kHz
and stored in PCM 24bits. Laughs have been segmented from
the recorded signals.

This interaction data has been used to train the dialog
manager component (see Section VII).

D. Augsburg scenario recordings

In order to tune the laughter detection (initially developed
on the SEMAINE database) to the sensors actually used in
Laugh Machine, a dedicated dataset has been recorded.

Since laughter includes respiratory, vocal, and facial and
skeletomuscular elements [21], we can expect to capture signs
of laughter if we install sensory to capture the user’s voice,
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facial expressions, and movements of the upper body. To have
a minimum of sensors we decided to work with only two
devices: the Microsoft Kinect and the Chest Band developed
at the University College London (see Section VI-D). The
latest version of the Microsoft Kinect SDK' not only offers
full 3D body tracking, but also a real-time 3D mesh of facial
features—tracking the head position, location of eyebrows,
shape of the mouth, etc.

TABLE I
RECORDED SIGNALS.

Recording device  Captured signal

Video

Face points

Facial action units
Head pose
Skeleton joints
Audio

Description

RGB, 30fps, 640x480

Microsoft Kinect

16 kHz, 16 bit, mono
120Hz, 8 bit

Respiration Sensor ~ Thoracic circumference

The recorded signals are summarized in Table I. Recordings
took place at the University of Augsburg, using the Social
Signal Interpretation (SSI, see Section VI-A) tool. During the
sessions 10 German and 10 Arabic students were recorded
while watching the stimulus film. By including participants
with different cultural background it is our hope to improve
the robustness of the final system. The recordings were then
manually annotated at three levels: 1) beginning and ending
of laughter in the audio track, 2) any non-laughter event in the
audio track, such as speech and other noises, and 3) beginning
and ending of smiles in the video track.

V. SYSTEM ARCHITECTURE

The general system architecture is displayed in Figure 1.
We can distinguish 3 types of components: input components,
decision components and output components. They are respec-
tively explained in Sections VI, VII and VIIIL.

The input components are responsible for multimodal data
acquisition and real-time laughter-related analysis. They in-
clude laughter detection from audiovisual features, body move-
ments analysis (with laughter likelihood), respiration signal
acquisition (also with laughter likelihood) and input laughter
intensity estimation.

The decision components receive the information from the
input components (i.e., laughter likelihoods and intensity from
multimodal features) as well as contextual information (i.e.,
the funniness of the stimulus, see Section IX-C2, in green
on Figure 1) and determines how the virtual agent should
react. There are actually two decision components: the dialog
manager, which decides if and how the agent should laugh
at each time frame (typically 200ms), is followed by a block
called “Laughter Planner”, which decides whether or not the
instruction to laugh should be forwarded to the synthesis
components. In some cases, for example when there is an
ongoing animation, it is indeed preferable not to transmit new
synthesis instructions.

Thttp://www.microsoft.com/en-us/kinectforwindows/

The output components are responsible for the audiovi-
sual laughter synthesis that is displayed when the decision
components instruct to do so. In the current state of these
components, it is not possible to interrupt a laughter animation
(e.g., to decide abruptly to stop laughing or on the other hand
to laugh more intensely before the current output laughter
is finished). This is the reason why the “Laughter Planner”
module has been added. The Laugh Machine project includes
one component for audio synthesis and 2 different animation
Realizers, Greta and LivingActor (see Section VIII).

All the components have to work in real-time. Thus, the
organization of the communication between different compo-
nents is crucial in such project. For this purpose we use the
SEMAINE? architecture which was originally aimed to build a
Sensitive Listener Agent (SAL). The SEMAINE API is a dis-
tributed multi-platform component integration framework for
real-time interactive systems. The architecture of SEMAINE
API uses a message-oriented middleware (MoM) in order to
integrate several components — where actual processing of the
system is defined. Such components communicate via a set
of topics. Here, a topic is a virtual channel where each and
every published message, addressed to that topic, is delivered
to its subscribed consumers. The communication passes via the
message-oriented middleware ActiveMQ™ [22], which sup-
ports multiple operating systems and programming languages.
For component integration, the SEMAINE API encapsulates
the communication layer in terms of components that receive
and send messages, and a system manager that verifies the
overall system state, provides a centralized clock independent
of the individual system clocks.

To integrate Laugh Machine components we used the same
exchange messages server (i.e., ActiveMQ) and the SEMAINE
APIL. Each Laugh Machine component can read and write
to some specific ActiveMQ topics. For this purpose we de-
fined a hierarchy of message topics and for each topic the
appropriate message format. Simple data (such as input data
or clock signals) were coded in simple text messages in
string/value tuples, so called MapMessages, e.g. the message
AUDIO_LAUGHTER_DETFECTION 1 is sent wherever
laughter was detected from the audio channel. On the other
hand more complex information such as the description of
the behavior to be displayed was coded in standard XML
languages such as the Behavior Markup Language® (BML).

It should be noted that, since the available data to train
the decision components ((i.e., the Belfast dyads data) did not
contain Kinect nor respiration signals, the decision modules
currently use only the acoustic laughter detection and acoustic
laughter intensity. The other input components (in yellow on
Figure 1) are nevertheless integrated in the system architecture
and their data is recorded in order to train the decision modules
with these additional signals in the future.

VI. INPUT COMPONENTS
To work properly, our system must be able to capture
sufficient information about the user, coming from different

Zhttp://www.semaine-project.eu/
3http://www.mindmakers.org/projects/bml-1-0/wiki/Wiki?version=10
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Fig. 1. Overall architecture of Laugh Machine

modalities such as sound, visual tracking, and chest move-
ment. To facilitate the multimodal data processing and the
synchronisation between the different signals, we have used
the Social Signal Interpretation (SSI) [23] software developed
at the University of Augsburg. This software will be presented
first in this section, then we will present the different analysis
components that have been developed: audiovisual laughter
detection, laughter intensity estimation, respiration signal ac-
quisition and body movement analysis. All these components
have been plugged directly in SSI, except the body motion
analysis, due to a problem of sharing the Kinect data in real-
time.

A. SSI

The desired recognition component has to be equipped with
certain sensory to capture multimodal signals. First, the raw
sensor data is collected, synchronized and buffered for further
processing. Then the individual streams are filtered, e.g. to
remove noise, and transformed into a compact representation
by extracting a set of feature values from the time- and
frequency space. The in this way parameterized signal can be
classified by either comparing it to some threshold or applying
a more sophisticated classification scheme. The latter usually
requires a training phase where the classifier is tuned using
pre-annotated sample data. The collection of training data is
thus another task of the recognition component. Often, an
activity detection is required in the first place in order to
identify interesting segments, which are subject to a deeper
analysis. Finally, a meaningful interpretation of the detected
events is only possible at the background of past events
and events from other modalities. For instance, detecting
several laughter events within a short time frame increases
the probability that the user is in fact laughing. On the

other hand, if we detect that the user is talking right now
we would decrease the confidence for a detected smile. The
different tasks the recognition component is involved with are
visualized in Figure 2.

offline analysis )
1
L
logging learning
t A N—
pipeline hearda
~ Y00
50 mg e on &&= I
sensory processing detection fusion
communication l ik
Fig. 2. Scheme of the laughter recognition component implemented with

the Social Signal Interpretation (SSI) framework. Its central part consists of
a recognition pipeline that processes the raw sensory input in real-time. If an
interesting event is detected it is classified and fused with previous events and
those of other modalities. The final decision can be shared through the network
with external components. In order to train the recognition components a
logging mechanism is incorporated in order to capture processed signals and
add manual annotation. In an offline learning step the recognition components
can now be tuned to improve accuracy.

The Social Signal Interpretation (SSI) software [23] devel-
oped at Augsburg University suits all mentioned tasks and
was therefore used as a general framework to implement the
recognition component. SSI provides wrappers for a large
range of commercial sensors, such as web/dv cameras and
multi-channel ASIO audio devices, as well as the Nintendo Wii
remote control, Microsoft Kinect and various physiological
sensors like NeXus, ProComp, AliveHeartMonitor, IOM or
Emotiv. A patch-based architecture allows a developer to
quickly construct pipelines to simultaneously manipulate the
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raw signals captured by multiple devices, where the length
of the processing window can be adjusted for each modality
individually. Many common filter algorithms, such as moving
and sliding average, Butterworth, Chebyshev, Elliptic, etc. as
well as, derivative and integral filters are part of the core
system and can be easily combined with a range of low-
level features such as Fourier coefficients, intensity, cepstra,
spectrogram, or pitch, as well as, more than 100 functionals,
such as crossings, extremes, moments, regression, percentiles,
etc. However, a plug-in system encourages developers to
extend the core functions with whatever algorithm is required.
A peak detection component is included, too, which can be
applied to any continuous signal in order to detect segments
above a certain activity level. If an event is detected it can
be classified using one of various classification models such
as K-Nearest Neighbor (KNN), Linear Discriminant Analysis
(LDA), Support Vector Machines (SVM) or Hidden Markov
Models (HMM). Tools for training and evaluation are available
and can be combined with several feature selection algorithms
(e.g., SFS) and over-sampling techniques (e.g., SMOTE [24])
for boosting under represented classes are available, too.
Finally, classified events can be fused over time using vector-
based event fusion. SSI offers a XML interface to put the
different components to a single pipeline and keep control of
important parameters.

In the Laugh Machine project, SSI was used for body and
face tracking as well as audio and respiration recording. To
have access to the new features provided in the latest Microsoft
Kinect SDK, the Kinect wrapper in SSI was revised and
updated accordingly. To access to the stretch values measured
by the respiration sensor a new sensor wrapper was written
using a serial connection.

After finishing the integration of the sensor devices, a
recording pipeline was set up to record a training corpus for
tuning the final recognition system (the Augsburg scenario
recordings presented in Section IV-D). The pipeline also
includes a playback component that allows replay of a video
file to the user in order to induce laughter. This feature was
used to drive the stimulus video directly from SSI. Since the
video playback is then synchronized with the recorded signals,
it is possible to relate captured laughter bouts to a certain
stimuli in the video. The same pipeline was later used in
our experiments. It is illustrated in Figure 3, which presents
the Laugh Machine architecture from the point of view of
SSI. The following sections present components that have
been integrated into SSI: laughter detection, laughter intensity
estimation and respiration signal acquisition.

B. Laughter detection

Starting from the literature one can find several studies
dealing with the detection of laughter from speech (e.g.,
[1]-[3], see Section II-A). Most of them are pure offline
studies and in part the explored feature types and classification
methods vary largely. This circumstance makes it difficult to
decide from scratch, which feature set and classifier would be
the best choice for an online laughter detector. Hence, it was
decided to run a fair comparison of the suggested methods in

Raw data, Loggin
g SSi
ActiveMQ
*Laughter/Smile detection
«Intensity N
g

Context

Decision
components

Synthesis
components

Fig. 3. SSI roles in the Laugh Machine system. While the user is watching
funny video clips his or her non-verbal behavior is analyzed by a recognition
component developed with SSI. If a laughter event is detected this information
is shared to the behavior model, which controls the avatar engine. According
to the input the avatar is now able to respond in an appropriate way, e.g., join
the user’s laughter bout.

a large scale study. To this end, the SEMAINE database has
been used and annotations of 19 files containing laughter were
manually edited (as explained in Section IV-A).

Based on the edited annotations, for each second (a number
commonly found in literature) it was decided whether the
segment includes only silence (1906 samples), pure speech
(5328), pure laughter (370), or both, speech and laughter (261).
Samples were then equally distributed in a training and test
set, while it was ensured that samples of the same user would
not occur in both sets. To have an equal number of samples
for each class, underrepresented classes were oversampled
in the training set using SMOTE. After some preliminary
tests it was decided to leave out silence, as it can be easily
differed from speech and laughter using activity detection. It
was also decided to leave out samples including both speech
and laughter, as the goal of the experiment was to find features
that best discriminate the two classes.

After setting up the database, large parts of the openSMILE
(Speech & Music Interpretation by Large-space Extraction)
feature extraction toolkit developed at the Technical University
Munich (TUM) [25] were integrated into SSI. OpenSMILE
is an open source state-of-the-art implementation of common
audio features for speech and music processing. An important
feature is its capability of on-line incremental processing,
which makes it possible to run even complex and time-
consuming algorithms, such as pitch extraction, in real-time.
Based on the findings of earlier studies, the following speech-
related low-level features were selected as most promising can-
didates: Intensity, MFCCs, Pitch, PLPs. On these the following
11 groups of functionals were tested: Zero-Crossings, DCT
(Direct Cosine Transform) Coefficients, Segments, Times,
Extremes, Means, Onsets, Peaks, Percentiles, Linear and
Quadratic Regression, and Moments. Regarding classification,
four well known methods were chosen: Naive Bayes (NB),
Gaussian Mixture Models (GMM), Hidden Markov Models
(HMM) and Support Vector Machines (SVM). Finally, the
frame size at which low-level features are extracted was also
altered.
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A large scale experiment was then conducted. First, each
of the 11 groups of functionals was tested independently with
each of the four low-level feature types. In case of MFFCs
also the number of coefficients was altered and higher-order
derivatives (up to 4) were added. Results suggest that most
reliable results are achieved using Intensity and MFCCs, while
adding Pitch and PLP features did not improve results on the
studied corpus. Among the functionals, Regression, Moments,
Peaks, Crossings, Means and Segments are considered to carry
most distinctive information. Regarding classification, SVM
with a linear kernel clearly outperformed all other tested
recognition methods. In terms of operation size accuracy was
highest at a frame rate of 10ms with 2/3 of overlap. In the best
case an overall accuracy of 88.2% at an unweighted average
recall of 91.2% was obtained.

The developed laughter detection framework was then tuned
to the specific Laugh Machine scenario and input components
(i.e., the audio is recorded by the Kinect), thanks to the
Augsburg scenario recordings (see Section IV-D). The anno-
tations of the audio tracks were used to re-train the laughter
detector described above, with the features extracted in the
Laugh Machine scenario conditions. The obtained laughter
model was finally combined with a silent detection to filter out
silent frames in the first place and classifying all remaining
frames into laughter or noise. The frame size was set to 1
second with an overlap of 0.8 second, i.e. a new classification
is received every 0.2 second. The annotations of the video
tracks are meant for training an additional smile detector in
the future. Same counts for the respiration signal (see Section
VI-D), which in future will serve as a third input channel to
the laughter detector.

C. Laughter intensity

Knowing the intensity of incoming laughs is important in-
formation to determine the appropriate behavior of the virtual
agent.

In [26], naive participants have been asked to rate the
intensity of laughs from the AVLaughterCycle database [19]
on a scale from 1 (very low intensity) to 5 (very high intensity).
One global intensity value had to be assigned to each laugh.
Audiovisual features that correlate with these perceived global
intensity have then be investigated.

Here, we wanted not only to estimate the global laughter
intensity, after the laugh has finished, but to measure in real-
time the instantaneous intensity. As a first step, only the audio
modality was included. 49 acoustic laughs, produced by 3
subjects of the AVLaughterCycle database and distributed over
the ranges of annotated global intensity values, have been
continuously annotated in intensity by one labeler. Acoustic
features have been extracted with the objective to predict the
continuous intensity curves.

Figure 4 displays the manual intensity curve for one laugh,
together with the automatic intensity prediction obtained from
two acoustic features: loudness and pitch. The intensity curve
is obtained by a linear combination between the maximum
pitch and the maximum loudness values over a sliding 200ms
window, followed by median filtering to smooth the curve. The

overall trend is followed, even though there are differences,
mostly at the edge of the manually spotted bursts, and the
manual curve is smoother than the automatic one. Further-
more, the overall laughter intensity can be extracted from the
continuous annotation curve: correlation coefficients between
the median intensity scored by users and the intensity predicted
from acoustic features are over 0.7 for 21 out of 23 subjects*.

-
!
3'5
7
L

Fig. 4. Example of laughter continuous intensity curve. Top: waveform;
Bottom: manual and automatic intensity curves.)

During the eNTERFACE workshop, work has been done
to improve the computation of the continuous intensity curve.
Indeed, the linear combination is able to capture trends for
one subject (which laugh or laugh segment is more intense
than another one), but the outputted values fall in different
ranges from one subject to another. Classification with Weka
[27] has been investigated to overcome this problem. First,
neural networks have been trained in Weka to predict the
continuous intensity curve from acoustic features (MFCCs and
spectral flatness). The correlation with the manually annotated
curves was over 0.8, using a “leave-one-subject-out” scheme
for testing. Second, other neural networks have been used
to compute the global laughter intensity from the predicted
continuous intensity. To keep the number of features constants,
5 functionals (max, std, range, mean, sum) of the continuous
intensity have been used as inputs. The results again show a
good correlation between the predicted global intensity and
the one rated by naive participants, in this case with similar
values for all the subjects of the AVLaughterCycle database.

However, the speaker-independent intensity detection with
Weka could not be integrated in the full LaughMachine
system yet. Only the linear combination has been used in
our experiments. Further work to improve laughter intensity
prediction include the extension of the feature set to visual
features, the integration of the Weka classification within the
Laugh Machine framework and possibly the adaptation of the
functions to the user.

D. Respiration

The production of audible laughter is, in essence, a respi-
ratory act since it requires the exhalation of air to produce
distinctive laughter sounds (“Ha”) or less obvious sigh- or
hiss-like verbalizations. The respiratory patterns of laughter
have been extensively researched as Ruch & Ekman [21]
summarize. A distinctive respiration pattern has emerged of

4The 24™ subject of the AVLC corpus only laughed 4 times and all these
laugsh were rated witht he same global intensity, which prevents us from
computing correlations for this subject
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a rapid exhalation followed by a period of smaller exhalations
at close-to-minimum lung volume. This pattern is reflected by
changes in the volume of the thoracic and abdominal cavities,
which rapidly decrease to reach a minimum value within
approximately 1 s [28]. These volumetric changes can be
seen through the simpler measure of thoracic circumference,
noted almost a century ago by Feleky [29]. In order to
capture these changes, we constructed a respiration sensor
based on the design of commercially available sensors: the
active component is a length of extensible conductive fabric
within an otherwise inextensible band that is fitted around
the upper thorax. Expansions and contraction of the thorax
change the length of the conductive fabric causing changes in
its resistance. These changes in resistance are used to modulate
an output voltage that is monitored by the Arduino prototyping
platform’. Custom-written code on the Arduino converts the
voltage to a 1-byte serial signal, linear with respect to actual
circumference, which is passed to a PC over a USB connection
at a rate of approximately 120Hz.

Automatic detection of laughter from respiratory actions has
previously been investigated using electromyography (EMG).
Fukushima et al. analyzed the frequency characteristics of
diaphragmatic muscle activity to distinguish laughter, which
contained a large high-frequency component, from rest, which
contained mostly low-frequency components [15]. We ex-
ploited the predictable respiration pattern of laughter to use
simpler techniques that do not rely on computationally de-
manding frequency decomposition. We identified laughter on-
set through the appearance of 3 respiration events (see Figure
5):

1) A sharp change in current respiration state (inhalation,

pause, standard exhalation) to rapid exhalation.

2) A period of rapid exhalation resulting in rapid decrease

in lung volume.

3) A period of very low lung volume

Fig. 5. Example of thoracic circumference, with laughter episode marked
in red, and notable features of laughter initiation. Feature 1 - a sharp change
in current respiration state to rapid exhalation; feature 2 - a period of rapid
exhalation; feature 3 - a period of very low lung volume.

These appear as distinctive events in the thoracic circum-
ference measure and its derivatives:

1) A negative spike in the second derivative of thoracic
circumference.

Shttp://www.arduino.cc/

2) A negative period in the first derivative of thoracic
circumference.
3) A period of very low thoracic circumference.

These were identified by calculating a running mean (Ay)
and standard deviation (oy) for each measure. A running
threshold (7y) for each measure was calculated as:

Tf:)\f—afaf (1)

where «y is a coefficient for that measure, empirically
determined to optimise the sensitivity/specificity trade-off.
Each feature was determined to be present if the value of
the measure fell below the threshold at that sample. Laughter
onset was identified by the presence of all three features in
the relevant order (1 before 2 before 3) in a sliding window
of approximately 1 s. This approach restricts the number of
parameters to 3 (c;_3) but does introduce lag necessary for
calculating valid derivatives from potentially noisy data. It
also requires a period for the running means and standard
deviations, and so the running thresholds, to stabilise. This
process would be jeopardised by the presence of large, rapid
respiratory event such as coughs and sneezes. We were unable
to integrate these rules into the LaughMachine system due to
technical errors. Future recordings on the LaughMachine plat-
form, incorporating the respiration data, will allow optimisa-
tion of these rules and the fusion of respiration data with other
modalities for real-time laughter/non-laughter discrimination.

E. Body analysis

The EyesWeb XMI platform is a modular system that
allows both expert (e.g., researchers in computer engineer-
ing) and non-expert users (e.g., artists) to create multimodal
installations in a visual way [30]. The platform provides
modules, called blocks, that can be assembled intuitively (i.e.,
by operating only with mouse) to create programs, called
patches, that exploit system’s resources such as multimodal
files, webcams, sound cards, multiple displays and so on. The
body analysis input component consists of an EyesWeb XMI
patch performing analysis of the user’s body movements in
realtime. The computation performed by the patch can be split
into a sequence of distinct steps, described in the following
subsections.

1) Shoulder tracking: The task of the body analysis module
is to track the user’s shoulders and perform some computation
on the variation of their position in realtime. In order to do
that we could provide the Kinect shoulders’ data extracted
by SSI (see Section VI-B) as input to our component. How-
ever, we observed that the shoulders’ position extracted by
Kinect do not consistently follow the user’s real shoulder
movement: in the Kinect skeleton, shoulders’ position is
determined by performing some statistical algorithm on the
user’s silhouette and depth map and usually this computation
can not track subtle shoulders’ movement, for example, small
upward/downward movements. To overcome this limitation
we fixed two markers on the user’s body: two small and
lightweight green polystyrene spheres have been fixed on the
user’s clothes just over the user’s shoulders. The EyesWeb
patch separates the green channel of the input video signal
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to isolate the position on the video frame of the two spheres.
Then a tracking algorithm is performed to follow the motion
of the sphere frame by frame, as shown in Figure 6.

Fig. 6.  Two green spheres placed on the user’s shoulders are tracked in
realtime (red and blue trajectories)

The position of each user’s shoulder is associated to the
barycenter of each sphere, which can be computed in two
ways. The first consists in the computation of the graphical
barycenter of each sphere, that is, the mean of the pixels
of each sphere’s silhouette is computed. The second option
includes some additional steps: after computing the barycenter
like in the first case, we consider a square region around it and
we apply a Lukas-Kanade [31] algorithm to this area. The
result is a set of 3 points on which we compute the mean: the
resulting point is taken as the position of the shoulder.

2) Correlation: Correlation p is computed as the Pearson
correlation coefficient between the vertical position of the
user’s left shoulder and the vertical position of the user’s right
shoulder. Vertical positions are approximated by the y coor-
dinate of each shoulder’s barycenter extracted as mentioned
above.

3) Kinetic energy: It is computed from the speed of user’s
shoulders and their percentage mass as referred by [32] :

FE = %(mlvl + mQ’UQ)

4) Periodicity: Kinetic energy is serialized in a sliding
window time-series having a fixed length. Periodicity is then
computed on such time-series, using Periodicity Transforms
[33]. The input data is decomposed into a sum of its peri-
odic components by projecting data onto periodic subspaces.
Periodicity Transforms also provide a measure of the relative
contribution of each periodic signal to the original one. Among
many algorithms for computing Periodicity Transforms, we
chose mbest. It determines the m periodic components that,
subtracted from the original signal, minimize residual energy.
With respect to the other algorithms, it also provides a better
accuracy and does not need the definition of a threshold.

5) Body Laughter Index: Body Laughter Index (BLI) stems
from the combination of the averages of shoulders’ correlation
and kinetic energy, integrated with the Periodicity Index. Such
averages are computed over a fixed range of frames. However
such a range could be automatically determined by applying
a motion segmentation algorithm on the video source. A
weighted sum of the mean correlation of shoulders’ movement
and of the mean kinetic energy is carried out as follows:

BLI = ap+ BE

As reported in [21], rhythmical patterns produced during
laughter usually have frequencies around 5 Hz. In order to take
into account such rhythmical patterns, the Periodicity Index is

used. In particular, the computed BLI value is acknowledged
only if the mean Periodicity Index belongs to the arbitrary
range [%,%], where fps is the input video frame rate
(number of frames per second).

6) ActiveMQ: The EyesWeb XMI platform can be ex-
panded to implement new functionalities that could be in-
cluded into new sets of programming modules (blocks). To
allow the communication between the body analysis patch and
the other components (e.g., the SSI audio and face analysis
component) we implemented two new blocks: the ActiveMQ
receiver and the ActiveMQ sender. Body analysis component
sends two types of data using the ActiveMQ message format
described in Section V: data messages and clock messages.
Data messages contain tuples representing the values of the
user’s shoulders movement features presented above. Clock
messages contain the system clock of the machine on which
the EyesWeb XMI platform is running. They are sent to
the ActiveMQ server on which all the other components are
registered. So, the local clock of all the components (audio
and face analysis, dialogue generation and so on) is constantly
updated with the same value and synchronization between
the different component can be assured. In the future we
aim to exploit the synchronization features embedded in the
SEMAINE platform, that is implemented as a layer of the
ActiveMQ communication protocol.

VII. DIALOG MANAGER

The laughter-enabled dialogue management module aims at
deciding, given the information from the input components
(i.e., laughter likelihoods and intensity from multimodal fea-
tures) as well as contextual information (i.e., the funniness
of the stimulus), when and how to laugh so as to generate
a natural interaction with human users. In this purpose, the
dialogue management task is seen as a sequential decision
making process meaning that the behavior is not only influ-
enced by the current context but also by the history of the
dialogue. This is a main difference comparing with the other
interactive systems such as SEMAINE. The optimal sequence
of decisions is learned from actual human-human or human-
computer interaction data and is not rule-based or handcrafted
which is another difference with the SEMAINE system.

The decision of whether and how to laugh must be taken at
each time frame. For the eNTERFACE workshop a time frame
lasts At = 200ms. The input I received by the Dialog manager
at each time frame is a vector (I € [0,1]*: each feature has
been normalized) where k is the number of chosen multimodal
features. The output O produced at each time frame is a vector
(O €[0,1] x [0, timep,y]) where the first dimension codes the
laughter intensity and the second dimension codes the duration
of the laugh.

The method used to build the decision rule during the
eNTERFACE workshop is a supervised learning method. A
supervised learning method is able via a training data set
D = {zi,yi }1<i<s ({x:i}1<i< are the inputs which belong to
the set X, {y; }1<i< are the labels which belong to the set Y’
and J € N*) to build a decision rule 7. The decision rule 7 is
a function from X to Y that generalizes the relation between
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the inputs x; and the labels y; of the training data set. There
are two different types of supervised methods: Classification
when the number of outputs is finite and Regression when the
number of outputs is infinite.

A. Training of the Dialog manager

To apply a supervised learning method to our dialog man-
ager, we need a training data set specific to our scenario
(see Section III). The Belfast interaction dyads (see Section
IV-C) was recorded to this purpose. Let us name the two
interacting participants P1 and P2, respectively recorded on
tracks 7'1 and T2. We recall that the participants watch
simultaneously the same stiumulus video, and can also see
(and hear) each other on the display screen: P2 is viewable
by P1 and is considered as playing the role of the virtual
agent. The length of a recording is H = KAt. Thus, on T'1
we have the inputs (i.e., laughter likelihoods and intensity from
multimodal features of P1) {I;}1<i<x of the Dialog manager
and on T2 the corresponding outputs {O; }1<;<x which are
the intensities and durations of the laughs of P2.

The aim of the supervised method is to find a decision rule
such that the virtual agent will be able to imitate P2. Before
applying a supervised method, we decided to cluster the inputs
with N clusters (via a k-means method) and to cluster the
outputs with M clusters (via a Gaussian Mixture Model, or
GMM, method). k-means clustering is a method of cluster
analysis which aims to partition n € N* observations into
0 < k < n clusters in which each observation belongs to the
cluster with the nearest mean. This results in a partitioning of
the data space into Voronoi cells. GMM clustering is a method
of cluster analysis where each cluster can be parameterized by
a Gaussian distribution. The choice of the GMM method for
the output clustering is explained in Section VII-B.

Thanks to clustering, the input data becomes the input
clustered data {IC}1<i<x with IS € {1,...,N} and the
output data becomes the output clustered data {OF}1<;<x
with OF € {1,..., M}. Clustering the inputs allows to have
a finite decision rule which means that the decision rule can
be represented by a finite vector. Clustering the outputs allows
using a classification method such as the k-nearest neighbors
(k-nn) instead of a regression method which is more difficult
to implement.

Finally the supervised method used on the clustered data
{IF,Of }1<i<K is a k-nearest-neighbor method which gives
us the decision rule 7 which is a function from {1,..., N} to
{1,...,M}. k-nn is a method for classifying objects based
on closest training examples: the object is assigned to the
most common label amongst its k nearest neighbors. Figure 7
represents the training phase of the Dialog manager needed to
obtain the decision rule 7.

B. Using the Dialog manager

The decision rule 7 obtained by the classification method
on {IF,0f}1<i<k is a function from {1,...,N} to
{1,...,M}: it takes an input cluster and it gives an output
cluster. However, our dialog manager must be able to take an
input I € [0, 1]* and give an output O € [0,1] x [0, timeay].

Clustered input

Raw input . data: {IS}h <«
X N Input Clustering
data: {l}qiec (k-means)
c AC . . Decisionrule:
IR  Classification )
! (k-nn)

Clustered output
data: {0} g

Raw output
data: {O}1qec

| Output Clustering
(GMM)

Fig. 7. Dialog Manager training

So, first we need to assign the input I € [0,1]¥ to the
corresponding input cluster I € {1,...,N}. To do that,
we choose the cluster for which the mean is the closest to
I€0,1]*:

I = argmin ||T — uf]|2, )
1<i<N
where p! is the mean of the input cluster i € {1,...,N}

and ||||2 is the euclidean norm. This operation is called the
input cluster choice. Second, to be able to generate O from
the selected output cluster | € {1,...,M} the question is:
which element of the output cluster [ must we choose in order
to correspond to the data {O;}1<;<x? This is why we use a
GMM method for clustering the outputs: each cluster [ can
be seen, in the 2-dimensional intensity-duration plane, as a
Gaussian of law N (uf,¥9), where uf is the mean of the
output cluster [ and Elo is the covariance matrix of the output
cluster [. Therefore, to obtain an output, it is sufficient to
sample an element O of law N (uf, ). This operation is
called the output generation.

Let us summarize the functioning of the Dialog manager
(see also Figure 8): we receive the input I, we associate this
input to its corresponding input cluster /¢ € {1,... N},
then the decision rule 7 gives the output cluster 7(I) €
{1,..., M}, finally the output O is chosen in the output cluster
7(I¢) € {1,..., M} via the output generation.

I (1)

I Input cluster R o
> Decisionrule =

choice

Output
l generation

Fig. 8. Dialog Manager functioning

C. Laughter Planner

In the Laugh Machine architecture, the dialog manager
is followed by the Laughter Planner, which is adapting the
outputs of the dialog manager to the constraints (instruction
format, avoid conflicting information, etc.) of the synthesis
modules. While it technically is a decision component, the
explanations about the Laughter Planner are included in the
visual synthesis section (Section VIII-B).
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VIII. AUDIOVISUAL LAUGHTER SYNTHESIS
A. Acoustic laughter synthesis

Given 1) the lack of naturalness resulting from previous
attempts to laughter acoustic synthesis, 2) the need for high
level control of the laugh synthesizer and 3) the good perfor-
mance achieved with Hidden Markov Model (HMM) based
speech synthesis [34], we decided to investigate the potential
of this technique for acoustic laughter synthesis. We opted for
the HMM-based Speech Synthesis System (HTS) [35], as it is
free and widely used in speech synthesis and research.

Explaining the details of speech synthesis with HMMs
or HTS going beyond the scope of this project report, we
will here only describe the major modifications that have
been brought to adapt our laughter data to HTS and vice-
versa, adapting functions or parameters of the HTS demo
(provided with the HTS toolbox) to improve the quality of
laughter synthesis. Readers who would like to know more
about HTS are encouraged to consult the publications listed
on the HTS webpage (http://hts.sp.nitech.ac.jp/?Publications),
and in particular [34] for an overview or Yoshimura’s Phd
Thesis [36] for more detailed explanations.

The following paragraphs respectively focus on the selection
of the training data, the modifications implemented in the HTS
demo and, finally, the resulting process for acoustic laughter
synthesis.

1) Selection and adaptation of acoustic data:

HMM-based acoustic synthesis requires a large quantity of
data: statistical models for each unit (in speech: phonemes) can
only be accurately estimated if there are numerous training
examples. Furthermore, the data should be labeled (ie., a
phonetic transcription must be provided) and come from a
single person, whose voice is going to be modeled. HMM-
based speech synthesis is usually trained with hours of speech.

It is difficult to obtain such large quantities of spontaneous
laughter data. The only laughter database including phonetic
transcriptions is the AVLaughterCycle database [19], [20],
which contains in total 1 hour of laughter from 24 subjects.
We decided to use that database for our acoustic laughter
synthesis.

To fully exploit the potential of HTS, the phonetic anno-
tations of the AVLaughterCycle database have been extended
to syllables. Indeed, HTS is able to distinguish contexts that
lead to different acoustic realizations of a single phoneme
(and on the other hand, HTS groups the contexts that yield
acoustically similar realizations of a phoneme). In speech, the
context of a phoneme is defined not only with the surrounding
phonemes, but also with prosodic information such as the
position of the phoneme within the syllable, the number of
phonemes in the previous, current and following syllables;
the number of syllables in the previous, current and following
words; the number of words in the phrase; etc. Except from
the surrounding phones®, such contextual information was not
available in the AVLC annotations, as there was no annotation
of the laughs in terms of syllables or words. It was decided

6Since the phonological notion of “phoneme” is not clearly defined for
laughter; we prefer to use the word “phone” for the acoustic units found in
our laughter database.

to add a syllabic annotation of the data to provide the biggest
possible contextual information. There is no clear definition
of laughter syllables, and the practical definition that has been
used for the syllabic annotation was to consider one syllable
as a set of phones that was acoustically perceived as forming
one block (or burst), usually containing one single vowel
(but not always, as laughter can take different structures from
speech). Since the syllabic annotation is time-consuming, it
was decided to do it only for the subjects who laughed the most
in the AVLaughterCycle database: subjects 5, 6, 14, 18 and 20.
These subjects laugh around 5 minutes each, which is already
far from the hours of training data used in speech synthesis,
and it seemed they represent the best hopes for good quality
laughter synthesis. The HTS contextual information was then
formed by assimilating a full laughter episode to a speech
sentence and laughter exhalation and inhalation segments to
words.

In addition, due to the limited available data, the phonetic
labels have been grouped in 8 broad phonetic classes—
namely: fricatives, plosives, vowels, hum-like (including nasal
consonants), glottal stops, nareal fricatives (noisy respiration
airflow going through the nasal cavities), cackles (very short
vowel similar to hiccup sound) and silence—instead of the
200 phones annotated in the AVLaughterCycle database [20].
Indeed, most of these phones had very few examples for each
speaker, and hence could not be accurately modeled. Grouping
acoustically similar phones enables to obtain better models, at
the cost of reduced acoustic variability (e.g., all the vowels
are grouped in an average model that is close to ‘a’, and we
loose the possibility to generate the few ‘0’s in the database).

An example of the resulting phonetic transcription is pre-
sented in Figure 9.

Finally, the laughs from the AVLaughterCycle database
have been processed to reduce background noise and remove
saturations.

2) Modifications of the HTS demo process:

Several minor modifications have been applied to HTS.
Some of them are simple parameter variations compared to the
standard values used in speech (and in the HTS demo). For
example, the boundaries for fundamental frequency estimation
have been extended (the values have been manually deter-
mined for each subject), the threshold for pruning decision
trees has been increased, etc. In addition the list of questions
available to decision trees has been extended, considering the
new contextual information available for laughter.

More important, two standard HTS algorithms have been
replaced by more efficient methods. First, the standard Dirac
pulse train for voiced excitation has been replaced by the
DSM model [37], which better fits the human vocal excitation
shapes and reduces the buzziness of the synthesized voice.
Second, the standard vocal tract and fundamental frequency
estimation algorithms provided by HTS have been replaced
by the STRAIGHT method [38], which is known in speech
processing to provide better estimations.

3) Synthesis process:

With the explained modifications to the AVLaughterCycle
database and the HTS demo, we were able to train laughter
synthesis models, with which we can produce acoustic laughs
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when giving an acoustic laughter transcription as input. It is
worth noting that there is currently no module to generate such
laughter phonetic transcriptions from high-level instructions
(e.g., a type of laughter, its duration and its intensity). We
are thus constrained to play existing laughter transcriptions.
Additionally, we noticed that the synthesis quality drops if
we want to synthesize a phonetic transcription from speaker
A with the models trained on voice B. In consequence, we
currently stick to re-synthesizing laughs from one speaker,
using both the phonetic transcription and the models trained
from the same subject.

A perceptive evaluation study still has to be carried out.
Nevertheless, the first qualitative tests are promising. The
modifications explained in the previous paragraphs largely
improved the quality of the laughter synthesis. There remain
some laughs or sounds that are not properly synthesized,
possibly due to the limited training data. Future works will
investigate this issue as well as the possibility to generate
new laughter phonetic transcriptions (or modify existing ones)
that can be synthesized properly. Nevertheless, at the end
of this project, we are able to synthesize a decent number
of good quality laughs for the best voices coming from the
AVLaughterCycle database.

B. Visual laughter Synthesis

Two different virtual agents and four different approaches
were used for the visual synthesis. The visual synthesis
component is composed of a Laughter Planner and 2 Realizers
and Players (see Figure 10).

The Laughter Planner receives from the dialog manager the
information about the appropriate laugh reaction through the

Laughter phonetic and syllabic annotation: from top to bottom: a) waveform b) spectrogram c) phonetic annotation (using the 8 broad classes) d)

ActiveMQ/SEMAINE architecture (see Section VII). Next it
chooses one laugh episode from the library of predefined laugh
samples and generates the appropriate BML command that is
sent through ActiveMQ/SEMAINE to one out of two realizers
available in the project: Living Actor or Greta Realizer.

] |
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Fig. 10. Visual Synthesis Component Pipeline

On Figure 10 we present the detailed processing pipeline
of our visual synthesis component. The Laughter Planner is
connected to the Greta Behavior Realizer and the Cantoche
Sender. The latter is responsible for the communication with
the Living Actor component (see Section VIII-B4). Both
Behavior Realizer and Cantoche Sender receive the same BML
message. As these realizers use completely different methods
for controlling the animation (Greta can be controlled by high-
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level facial behavior description in FACS and low-level fa-
cial animation parameterization (MPEG-4/FAPs) while Living
Actor plays predefined animations) we use realizer-specific
extensions of BML to assure that the animations played with
different agents are similar. If necessary, the Laughter Planner
can also send commands in a high-level language called
FML (FMLSemaineSender box) or control facial animations
at very low level by specifying the values of facial animation
parameters (FAPs) (FAPSender box). Independently of which
of these pipelines is used the final animation is described
using low level facial animation parameters (FAPs) and is
sent through ActiveMQ/SEMAINE to the visualization module
(FAPsender box). At the moment we use the Player from the
SEMAINE Project. Four characters are included in this Player
(2 male, 2 females) but for the purpose of the evaluation we
used only one of them.

The Laughter Planner module can work in three different
conditions, related to the three experimental scenarios: fixed
speech condition (FSC), fixed laughter condition (FLC) and
interactive laughter condition (ILC). In the first two conditions
(FSC and FLC), the Laughter Planner receives the information
about the context (time of funny event, see Section IX-C2) and
it sends the agent verbal (FSC) or nonverbal (FLC) reaction
pre-scripted in BML to be displayed to the user. The list of
these behaviors was chosen manually.

In ILC condition the behavior of the agent is flexible as
it is adapted to the participant and the context. The Laughter
Planner receives the information on duration and intensity of
laughter responses and using these values it chooses one laugh
episode from the library that matches the best both values.

At the moment, the synthesis components do not allow for
interruptions of the animation. Once it is chosen, the laugh
episode has to be played until the end. During this period
the Laughter Planner does not take into the account any new
information coming from dialog manager. All the episodes
start and end with a neutral expression. Thus they cannot be
concatenated without passing through neutral face. Addition-
ally the presynthesized audio wave file was synchronized with
the animation.

Four different approaches were used in the project to prepare
the lexicon of laughs: animation from the manual annotation
of action units; animation from automatic facial movements
detection; motion capture data driven; and manual animation.
They are explained in the next subsections.

1) Animation from manual Action Units:

The Facial Action Coding System (FACS; [39]) is a compre-
hensive anatomically based system for measuring all visually
discernible facial movement. It describes all distinguishable
facial activity on the basis of 44 unique Action Units (AUs), as
well as several categories for head and eye position movements
and miscellaneous actions. Facial expressions of emotions
are emotion events that comprise of a set of different AUs
expressed simultaneously. Using FACS and viewing digital-
recorded facial behavior at frame rate and in slow motion,
certified FACS coders are able to distinguish and code all
possible facial expressions. Utilizing this technique, a selection
of twenty pre-recorded, laboratory stimulated, laughter events
were coded. These codes were then used to model the facial

behavior on the agent.

Four subjects interacting in same sex dyads watching the
stimulus videos (see Section IV-C) were annotated by one
certified FACS coder. Inter rater reliability was obtained by
the additional coding of 50% of the videos by a second
certified coder. The inter-rater reliability was sufficient (r =
.80) and consent was obtained on events with disagreement.
Furthermore, a selection of 20 laughter events from the AVLC
laughter database [19] (subject 5) were coded by one certified
coder.

The Greta agent is able to display any configuration of
action units. For 3 characters (two females—Poppy and
Prudence— and one male—Obadiah) single action units were
defined and validated by certified FACS coders. A BML lan-
guage implemented in Greta permits to control independently
each action unit of the agent (its duration and intensity).

Furthermore, as a quality control, the animated AUs of
the virtual agent was scrutinized by the FACS coders for a)
anatomical appearance change accuracy, b) subtle differences
and dominance rules relating to changes in the face when
different intensity of facial expressions are produced.

During eNTERFACE we also developed a tool that auto-
matically converts manual FACS annotation files to BML.
Consequently any file containing manual annotation of action
units can be easily displayed with the Greta agent.

2) Animation from Automatic Facial Movements detection:
Greta uses Facial Animation Parameters (FAPs) to realize low
level facial behavior. FAPs in Greta framework are represented
as movements of MPEG-4 facial points compared to ‘neutral’
face. In order to estimate FAPs of natural facial expres-
sions, we make use of an open-source face tracking tool—
FaceTracker [40]—to track facial landmark localizations. It
uses a Constrained Local Model (CLM) fitting approach that
includes Regularized Landmark Mean-Shift (RLMS) optimiza-
tion strategy. It can detect 66 facial landmark coordinates
within real-time latency depending on system’s configuration.
Figure 11 shows an example of 2D and 3D landmark coordi-
nates predicted by FaceTracker.

3D landmarks

"0 2 A0 0 10 20 3

2D landmarks

Fig. 11.

Landmarks estimated by FaceTracker

Facial geometry is different for one and another. Therefore,
it is difficult to estimate FAPs without neutral face calibration.
To compute FAPs from facial landmarks, a neutral face model
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is created with the help of 50 neutral faces of different persons.
With the help of this model, FAPs are estimated as the
distance between facial landmarks and neutral face landmarks.
In case of user-specific FAP estimation in real-time scenario,
the neutral face is estimated from a few seconds of video
by explicitly requesting the user to be neutral. However, the
better estimation of FAPs requires manual intervention for
tweaking weights to map landmarks and FAPs, which is a
down-side of this methodology. Figure 12 shows comparison
of the locations between MPEG-4 FAP standard and the
FaceTracker’s landmark localizations.
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Fig. 12. (a) MPEG-4 FAP standard [left];(b) FaceTracker’s landmark
locations [right].

The landmark coordinates produced by the FaceTracker are
observed as noisy due to the discontinuities and outliers in
each facial point localization. Especially, the realized behavior
is unnatural when we re-target the observed behavior onto
Greta. In order to smooth the face tracking parameters, a tem-
poral regression strategy is applied on individual landmarks by
fitting 3rd order polynomial coefficients on a sliding window,
where the sliding window size is 0.67 seconds (i.e., 16 frames)
and sliding rate is 0.17 seconds (i.e., 4 frames). An example
of the final animation can be seen on Figure 13.

3) Animation from Motion Capture Data:

The AVLC corpus (see Section IV-B) contains motion
capture data of laugh episodes that has to be retargeted to the
virtual model. The main problem in this kind of approaches
consists in finding appropriate mappings for each participant’s
face geometry and different virtual models. Existing solutions
are typically linear (e.g., methods based on blendshape map-
ping) and do not take into account dynamical aspects of the
facial motion itself. Recently Zeiler et al. [41] proposed to
apply variants of Temporal Restricted Boltzmann Machines’
(TRBM) to facial retargeting problem. TRBM are a family of
models that permits tractable inference but allows complicated
structures to be extracted from time series data. These models
can encode a complex nonlinear mapping from the motion of
one individual to another which captures facial geometry and
dynamics of both source and target. In the original application
[41] these models were trained on a dataset of facial motion
capture data of two subjects, asked to perform a set of isolated
facial movements based on FACS. The first subject had 313

TThe source code for these models is publicly available at http://www.
matthewzeiler.com/software/RetargetToolbox/Documentation/index.html

markers (939 dimensions per frame) and the second subject
had 332 markers (996 dimensions per frame). Interestingly
there was no correspondence between marker sets.

We decided to use TRBM models for our project which
involves retargeting from an individual to a virtual character.
In our case, we take as input the AVLC mocap data and output
the corresponding facial animation parameters (FAP) values.
This task has two interesting aspects. First, the performance of
these models was previously evaluated only on retargeting an
isolated slow expression whereas our case involves transitions
from laughing to some other expression (smile or idleness)
as well as very fast movements. Second, we use less markers
comparing to the original application. Our mocap data had
only 27 markers on the face which is very sparse.

So far we used the AVLC data on one participant (number 5)
as a source mocap data. We used two sequences, one of 250
frames and another one of 150 frames, to train this model.
Target data (i.e., facial animation parameters) for this training
set was generated using the manual retargeting procedure
explained in [13]. Both the input and output data vectors
were reduced to 32 dimensions by retaining only their first 32
principal components. Since this model typically learns much
better on scaled data (around [-1,1]), the data was then nor-
malized to have zero mean and scaled by the average standard
deviation of all the elements in the training set. Having trained
the model, we used it to generate facial animation parameters
values for 2 minutes long mocap data (2500 frames coming
from the same participant). The first results are promising but
more variability in the training set is needed to retarget more
precisely different type of movements. It is important to notice
that this procedure needs to be repeated for each virtual model
(e.g., Poppy, Prudence, Obadiah).

4) Manual Animation:

The Laugh Machine Living Actor module is composed of
a real-time 3D rendering component using Living Actor tech-
nology and a communication component that constitutes the
interface between the Living Actor agent and the ActiveMQ
messaging system. Two virtual characters have been chosen for
the first prototype: a girl and a boy, both with cartoonish style.
Two types of laughter animations were created for each one
by 3D computer graphics artists by visually matching the real
person movies from the video database of interacting dyads
(see Section IV-C).

Laughter capability has been added to the Living Actor
character production tools and rendering component: specific
facial morphing data are exported from 3D character animation
tools and later rendered in real time. Laughter audio can be
played from an audio file, which can either be the recording
of a human laughter or a synthetic laughter synchronized with
the real laughs. A user interface has been added to test various
avatar behaviors and play sounds.

An Application Programming Interface has been added to
the Laugh Machine Living Actor module to remotely control
the avatar using BML scripts. A separate component was
created in Java to make the interface between the Laugh
Machine messaging system using ActiveMQ and TCP/IP
messages of Living Actor API. At this stage, the supported
BML instructions are restricted to a few commands, triggering
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Fig. 13.

Animation from Automatic Facial Movements detection

predefined laughs. But the foundation of more complex scripts
is ready.

When there are no instructions sent, the real-time 3D
rendering component automatically triggers “Idle” animations
during which the virtual agent is breathing, making it more
realistic and assuring animations continuity.

C. Audiovisual laughter synthesis

In the present work, no new laughter is generated. Instead,
existing laughs are re-synthesized. All the animations can thus
be prepared. For all the laughter animations, we synthesized
separately the acoustic and the visual modalities, using the
original audiovisual signals (with synchronized audio and
video flows). In consequence the synthesized audio and video
modalities are also synchronized. Each acoustic laugh was
synthesized and the produced WAVE file was made available
to the virtual agent. When the agent receives the instruction
to laugh, it loads simultaneously the acoustic (WAVE) file and
the BML animation file, and plays them synchronously.

IX. EXPERIMENTS

A. Participants

Twenty-one participants (13 males; ages ranging from 25 to
56 years, M = 33.16, SD = 8.11) volunteered to participate.
Four participants were assigned to the fixed speech condition,
5 to the fixed laughter condition and 11 to the interactive
condition.

B. State and Trait influences on the perception of the virtual
agent and its evaluation

Three kinds of subjective ratings were utilized to assess
a) habitual and b) actual factors affecting the perception of
the virtual agent and c) the evaluation of the interaction. For
the habitual factors, two concepts were used: the disposi-
tions towards ridicule and laughter, and the temperamental
basis of the sense of humor, with one questionnaire each
(PhoPhiKat< 45 >; [42]; State-Trait Cheerfulness Inventory,



ENTERFACE’12 SUMMER WORKSHOP - FINAL REPORT; PROJECT P2 : LAUGH MACHINE 28

STCI; [43]). Actual factors were assessed by measuring partic-
ipant’s mood before and after the experiment (state version of
the STCI; [44]). The evaluation of the interaction was assessed
with the Avatar Interaction Evaluation Form (AIEF; [45]).

1) Habitual Factors:

The assessment of personality variables allowed for a
control of habitual factors influencing the perception of the
virtual agent, independent of its believability. For example,
gelotophobes, individuals with a fear of being laughed at
(see [46]), do not perceive any laughter as joyful or relaxing
and they fear being laughed at even in ambiguous situations.
Therefore, the laughing virtual agent might be interpreted as
a threat and the evaluation would be biased by the individuals
fear. By assessing the gelotophobic trait, individuals with at
least a slight fear of being laughed at can either be excluded
from further analysis, or the influence of gelotophobia can
be investigated for the dependent variables. Further, the joy
of being laughed at (gelotophilia) and the joy of laughing at
others (katagelasticism) might alter the experience with the
agent, as katagelsticists might enjoy laughing at the agent,
while gelotophiles may feel laughed at by the agent and
derive pleasures from this. Both dispositions may increase
the positive experience of interacting with an agent. The
PhoPhiKat-45 is a 45-item measure of gelotophobia (“When
they laugh in my presence I get suspicious”), gelotophilia
(“When I am with other people, I enjoy making jokes at my
own expense to make the others laugh”), and katagelasticism
(“I enjoy exposing others and I am happy when they get
laughed at”). Answers are given on a 4-point Likert scale
(1 =strongly disagree to 4 = strongly agree). Ruch and Proyer
[42] found high internal consistencies (all alphas > .84) and
high retest-reliabilities > .77 and > .73 (three to six months).
In the present sample, reliabilities were satisfactory to high
and ranged between « = .81 to .83.

Also, it was shown that the traits and states representing
the temperamental basis of the sense of humor influence an
individual’s threshold for smiling and laughter, being amused,
appreciating humor or humorous interactions (for an overview
see [47]). It was assumed that trait cheerful individuals would
enjoy the interaction more than low trait cheerful individuals,
as they have a lower threshold for smiling and laughter, those
behaviors are more contagious and there are generally more
elicitors of amusement to individuals with high scores. For
trait bad mood, it was expected that individuals with high
scores would experience less positive affect when interacting
with the agent, compared to individuals with low scores, as
individuals with high scores have an increased threshold for
being exhilarated, and they do not easily engage in humorous
interactions.

The STCI assesses the temperamental basis of the sense of
humor in the three constructs of cheerfulness (CH), seriousness
(SE), and bad mood (BM) as both states (STCI-S) and traits
(STCI-T). Participants completed the STCI-T before the exper-
iment to be able to investigate the influence of cheerfulness,
seriousness and bad mood on the interaction. The standard
state form (STCI-S< 30>; [44]) assesses the respective states
of cheerfulness, seriousness and bad mood with ten items each
(also on a four-point answering scale). Ruch and Kohler [48]

report high internal consistencies for the traits (CH: .93, SE:
.88, and BM: .94). The one month test-retest stability was
high for the traits (between .77 and .86), but low for the states
(between .33 and .36), conforming the nature of enduring traits
and transient states.

2) Actual Factors:

Different experiments and studies on the state-trait model
of cheerfulness, seriousness, and bad mood showed that par-
ticipant’s mood alters the experience of experimental interven-
tions and natural interactions (for an overview, see [47]). Also,
individual’s mood changes due to interactions and interven-
tions, for example state seriousness and bad mood decrease
when participating carnival celebrations, while cheerfulness
increases. Therefore, state cheerfulness, seriousness and bad
mood were assessed before and after the experiment to inves-
tigate mood influence on the interaction with the agent (with
the above mentioned STCI-S).

3) Evaluation:

To evaluate the quality of the interaction with the virtual
agent, the naturalness of the virtual agent and cognitions and
beliefs toward it, a questionnaire was designed for the purposes
of the experiment. The aim of the Avatar Interaction Evalua-
tion Form (AIEF) is to assess the perception of the agent, the
emotions experienced in the interaction, as well as opinions
and cognitions towards it on broad dimensions. The instrument
consists of 32 items and 3 open questions, which were
developed following a rational construction approach. The first
seven statements refer to general opinions/beliefs and feelings
on virtual agents (e.g., “generally I enjoy interacting with
virtual agents”). Then, 25 statements are listed to evaluate the
experimental session. The following components are included:
positive emotional experience (8 items; e.g., “the virtual agent
increased my enjoyment”), social (and motivational) aspects
(7 items; e.g., “being with the virtual agent just felt like being
with another person”), judgment of technical features of the
virtual agent/believeability (5 items; e.g., “the laughter of the
virtual agent was very natural”), cognitive aspects assigned
to the current virtual agent (5 items; e.g., “the virtual agent
seemed to have a personality”). All statements are judged on a
seven point Likert-scale (1 = strongly disagree to 7 = strongly
agree). In the three open questions, participants can express
any other thoughts, feelings or opinions they would like to
mention, as well as describing what they liked best/least.

4) Further Evaluation Questions and Consent Form:

To end the experimental session, the participants were
asked for general questions to assess their liking of candid
camera humor in general (“Do you like candid camera-clips
in general?” “How funny were the clips?” “How aversive were
the clips?” “Would you like to see more clips of this kind?”).
All questions were answered on a seven point Likert-scale.
Then, participants were asked to give written consent to the use
of the collected data for research and demonstration purposes
(eNTERFACE workshop and ILHAIRE?® project).

C. Conditions

1) Overview:

8http://www.ilhaire.eu
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To create an interaction setting, the participants were asked
to watch a film together with the virtual agent. Three condi-
tions were designed (fixed speech, fixed laughter, interactive),
systematically altering the degree of expressed appreciation
of the clip (amusement) in verbal and non-verbal behavior, as
well as different degrees of interaction with the participant’s
behavior. In the fixed speech and fixed laughter conditions,
the agent would be acting independent of the participant, but
still be signaling appreciation. In the interactive condition, the
agent was responding to the participant’s behavior. In other
words, only the contextual information was used in the fixed
speech and fixed laughter conditions, while the input and
decision components (see Sections VI and VII) were active
in the interactive condition.

2) Selection of pre-defined time points for the fixed laughter
and fixed speech condition:

The pre-defined times were chosen from the stimulus video.
Firstly, 14 subjects (three females) watched the video material
and annotated the funniness to it on a continuous funniness
rating scale (ranging from “not funny at all” to “slightly
funny”, to “funny”, to “really funny” to “irresistibly funny”).
Averaged and normalized funniness scores were computed
over all subjects, leading to sections with steep increases in
funniness (apexes; see Figure 14) over the video. Secondly, the
trained raters assigned “punch lines” to the stimulus material,
basing on assumptions of incongruity-resolution humor theory.
Whenever the incongruous situation/prank was resolved for the
subject involved, and amusement in the observer would occur
from observing the resolution moment, a peak punch line was
assigned. Punch lines were assigned for the first punch line
occurring and the last punch line occurring in a given clip.
When matching the continuous ratings with the punch lines,
it was shown that the funniness apexes did cluster within the
first and last punch lines for all subjects and all pranks, apart
from one outlier. Table II shows the overall and apex durations
of each clip, as well as the number and intensity of the peaks
that have been fixed. For the three long apex sections, two
responses were fixed, were the averaged funniness ratings
peaked. Those peaks were rated on an intensity scale from 1
to 4. Pre-defined time points were controlled for a 1.5s delay
in the rating/recording, due to reaction latency of the subjects
and motor response delay.

TABLE II
DURATION, APEX AND NUMBER FO FIXED RESPONSES FOR EACH OF THE
STIMULUS CLIPS

Apex

Fixed

Clip | Duration (s) duration (s) | responses Intensity
1 95 69 2 4
2 131 56 2 2
3 72 26 1 4
4 72 16 1 3
5 78 50 2 1

Notes: 1. Duration of apex (1% to last punch line). 2. Intensity (I = strong; 4 = weak)

3) Fixed Speech:
In the fixed speech condition, the agent expressed verbal
appreciation in 8 short phrases (e.g., “oh, that is funny”, “I

liked that one”, “ups”,
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this is great”, “how amusing”,
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phew”,

nodding, “I wonder what is next”) at pre-defined times. The
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Fig. 14. Continuous funniness ratings (means in blue and standard deviations
in red) over the stimulus video for 14 subjects and expert assigned punch lines
(first and last, in blue) to each clip. Red arrows indicate time points for fixed
responses.

verbal responses were rated for intensity on a four point scale
and matched to the intensity scores of the pre-defined time
points.

4) Fixed Laughter:

In the fixed laughter condition, the agent laughed at pre-
defined times during the video. The times were the same as the
time points in the fixed speech condition. The agent displayed
8 laughs which varied in intensity and duration, according to
the intensity ratings of the pre-defined time points. A laughter
bout may be segmented into an onset (i.e., the pre-vocal facial
part), an apex (i.e., the period where vocalization or forced
exhalation occurs), and an offset (i.e., a post-vocalization part;
often a long-lasting smile fading out smoothly; see [21]).
Therefore, the onset was emulated by an independent smiling
action just before the laughter (apex) would occur at the fixed
time. The offset of the laughter was already integrated in the
8 laughter chosen.

5) Interactive Condition:

In the interactive condition, which follows the architecture
presented in Section V and Figure 1, the agent was using
two sources of information to respond to the participant: the
continuous funniness ratings to the clip (context, shown in Fig-
ure 14) and the participant’s acoustic laughter vocalizations.
The dialog manager was receiving these two information flows
and continuously taking decisions about whether and how the
virtual agent had to laugh, providing intensity and duration
values of the laugh to display. These instructions were then
transmitted to the audiovisual synthesis modules. Due to the
limited number of laughs available for synthesis (14 at the
time of the experiments), it was decided to cluster them into
4 groups based on their intensities and durations. The output
of the dialog manager is then pointing to one of the clusters,
inside which the laugh to synthesize is randomly picked.

D. Problems encountered
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Several problems appeared during the experiments.

First of all, the computers we used were not powerful
enough to run all the components on a single computer. We
had to connect four computers together: one master computer
running the stimulus video and the Kinect recording and
analysis (+ the context), one computer running a webcam
with shoulder movement tracking driven by Eyesweb, another
one running the dialog manager and finally one computer for
displaying the virtual agent. Still, the master computer could
not record the video stream from the Kinect. We decided to run
the experiments without recording that video as we still have
the webcam recording, but this issue should be investigated
in the future. Furthermore, during some experiments, data
transmission from one computer to the other was suffering
from important delays (5-10s), which obviously affect the
quality of the interaction. Reducing these delays will be one
of the most important future developments.

Second, the audio detection module had been trained with
data containing mostly laughs, and relatively few other noises.
Hence, there was confusion between laughter and other loud
noises. In addition, the detection was audio-only, which does
not enable to take smiles or very subtle laughs (with low
audio) into account. We are already working on improving
the laughter detection and including other modalities (video,
respiration) to increase its robustness.

Third, from the training data, it appeared that the context
was by far the best factor to explain participants’ laughs:
in consequence, the dialog manager did not pay attention to
what the participant was doing, but only triggered laughs from
the contextual input. Since this is undesirable behavior in the
interactive condition (which is in that case actually similar to
the fixed laughter condition, as every reaction is only context-
dependent), we decided to omit the context in the interactive
condition: the virtual agent was then only reacting to what the
participant was doing. Better models should be built in the
future to allow both context and participant’s reactions to be
considered simultaneously.

Fourth, the pool of available laughs for synthesis is currently
limited. There are not a lot of laughs from one single voice
for which we have good quality synthesis for both the audio
and the visual modalities. This limits the range of actions
the virtual agent is able to perform and some participants
with whom the agent laughed a lot might have noticed
some repetitions. This will be improved in the future with 2
solutions: 1) a larger pool of available laughs 2) the possibility
to generate new laughter transcription and/or modify existing
ones in real-time.

Finally, a connection problem with the respiration sensor
prevented us from recording respiration data.

E. Procedure of the evaluation study

Participants were recruited through e-mail announcement
of an “evaluation study of the Laugh Machine project” at the
eNTERFACE workshop. As an incentive, participants were
offered a feedback on the questionnaire measures on request.
It was announced that the study consisted of the filling in of
questionnaires (approximately 30-45 minutes) and a session of

30 minutes on two given days. No further information on the
aims of the study was given. Participants chose a date for the
experimental session via the Internet and received confirmation
by email.

At the experimental session, participants were welcomed
by one of the two female experimenters and asked to fill
in the STCI and the PhoPhiKat. Then, participants were
asked to fill in the STCI-S to assess their current mood.
Meanwhile, the participants were assigned to one of the
three conditions. Afterwards, the second female experimenter
accompanied the participant to the experimenting room, where
the participant was asked to sit in front of a television screen.
A camera allowed for the frontal filming of the head and
shoulder, as well as upper body of the participant. Two
male experimenters concerned with the technical components
were present. Participants were asked for consent to have
their shoulder and body movements recorded. They were also
given headphones to hear the virtual agent. The experimenter
explained that the participant was asked to watch a film
together with Poppy and that the experimenters would leave
the room when the experiment started. Once the experimenters
left the room, the agent did greet the participant (“Hi, I'm
Greta. I’'m looking forward to watch this video with you.
Let’s start”) and subsequently, the video started. After the
film, the experimenters entered the room again and the female
experimenter accompanied the participant back to the location
where the post measure of the STCI-S, as well as the AIEF
and five further evaluation questions were filled in. After all
questionnaires were completed, the first female experimenter
debriefed the participant and asked for written permission to
use the obtained data.

The following setup was used in this experimental session
(see Figure 15). Two LCD displays were used: the bigger
one (46”) was used to display the stimuli (the funny film,
see Section III). The smaller (19”) LCD display placed on
the right side of the big one was used to display the agent
(a close-up view of the agent with only the face visible was
used). Four computers were used to collect the user data,
run the Dialog Module and to control the agent audio-visual
synthesis. Participant’s behaviors were collected through a
Kinect (sound, depth map, and camera) and a second webcam
synchronized with the EyesWeb software (see Section VI).
Because of technical issues we were not able to use the
respiration sensor in this experimental session. Participants
were asked to sit on a cushion about 1m from the screen.
They were asked to wear headphones.

In the evaluation we have used 14 laugh episodes from the
AVLC dataset (subject 5). For consistency reasons we have
used only one female agent (i.e., Poppy) and the animation
created with only one method i.e. automatic facial movements
detection (see Section VIII-B3).

X. RESULTS
A. Preliminary Analysis

Scale means for cheerfulness, seriousness, bad mood, gelo-
tophobia, gelotophilia and katagelasticism were investigated.
The sample characteristics of the PhoPhiKat and the STCI-T
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Fig. 15.

Setup of the experiment.

resembled norm scores for adult populations. In this sample,
the internal consistencies were satisfactory for all trait scales,
ranging from o = .74 for trait seriousness, to o = .91
for trait cheerfulness. In respect to trait variables biasing the
evaluation, three subjects were identified for exceeding the cut-
off point for gelotophobia. Means for the state cheerfulness,
seriousness and bad mood scores showed higher state bad
mood scores before the experiment, compared to previous
participants of studies on personality and humor. In respect
to the AIEF, the internal consistencies (Cronbach’s alpha) of
the scales were satisfactory, ranging from o = .78 (cognitive
aspects) to a = .90 (positive emotional experience).

B. Traits

In line with previous findings, trait cheerfulness was cor-
related negatively to trait bad mood (r = —.61,p < .01), as
well as trait seriousness (r = —.16,n.s.), but less strongly
to the latter one. Trait seriousness and bad mood were corre-
lated positively (r = .22, n.s.). Gelotophobia was correlated
negatively to gelotophilia (r = —.50,p < .05), as well as
(but less so) to katagelasticism. The latter negative (but not
significant; r = —.35,p = .117) correlation was unusual, as
gelotophobia usually shows zero correlations to katagelasti-
cism. Katagelasticism was positively related to gelotophilia
(r = .26,n.s.). Generally, correlations of the AIEF to the
trait scale did not reach statistical significance. Correlating the
dimensions and items of the AIEF to gelotophobia (bivariate
Pearson correlations) showed, that three of the four AIEF
scales were negatively correlated with gelotophobia, indicating
that higher scores in gelotophobia went along with less positive
emotions, less assignment of cognition and less believability
of the virtual agent to participants with higher scores. Feeling
social presence by the agent was positively correlated to gelo-
tophobia. Gelotophilia correlated positively with all dimen-
sions of the AIEF. Further, higher scores in katagelasticism
went along with more positive emotions, higher perceived
believability and higher perceived social presence. With regard
to the temperamental basis of the sense of humor, the highest

correlations to the AIEF dimensions were found for trait bad
mood. Unlike a priori assumptions, trait bad mood correlated
positively to the AIEF dimensions and correlations to trait
cheerfulness were generally very low. Trait seriousness was
correlated negatively to the AIEF scales.

C. States

Correlating the states to their respective traits showed that
trait cheerfulness was positively correlated to state cheerful-
ness both pre and post the experiment (but all n.s.). Trait
seriousness was positively correlated to seriousness after the
experiment, whereas trait bad mood was negatively correlated
to both, bad mood pre and post the experiment (both p < .01).
In this sample, a few individuals with low scores in trait bad
mood came to the experiment with high values in state bad
mood, whereas a few individuals with high scores on bad
mood came to the experiment with comparably low scores
in state bad mood. Descriptive analysis of the mood before
and after the experiment, it was found that the interaction
with the virtual agent led to a decrease in seriousness over
all conditions, whereas state cheerfulness stayed stable. State
bad mood before the experiment predicted lower scores on the
AIEF dimensions, suggesting that individuals that feel more
grumpy or sad generally experience less positive emotions
with the virtual agent, assign the agent less cognitive capa-
bility, experience less social interaction and judge it as less
believable (all r < —.489, p < .05).

D. AIEF Scales/Dimensions

Due to the low cell sizes, no test of significance could
be performed to testing the influence of the condition on
the AIEF dimensions. Nevertheless descriptive inspection of
the group means showed that the conditions differed in their
elicitation of positive outcomes on all dimensions of the
AIEF. The interactive condition yielded highest means on
all four dimensions, implying that the participants felt more
positive emotions, felt more social interaction with the agent,
considered it more natural and assigned it more cognitive
capabilities than in the fixed conditions (see Figure 16). The
means of the interactive condition were followed by the means
of the fixed laughter condition.

Interestingly, the fixed speech condition yielded similarly
high scores on the beliefs on cognition as the interactive
condition, whereas the other means were numerically lowest
for the fixed speech condition.

The results stayed stable when excluding the three individ-
uals exceeding the cut-off point for gelotophobia.

E. Open Answers

Out of the 21 participants, 14 gave answers to the question
of what they liked least about the session. Half of the partic-
ipants mentioned that the video was not very funny or would
have been funnier with sound. Two participants mentioned that
they could not concentrate on both, the virtual agent and the
film. Two of the three gelotophobes gave feedback (subject 2:
“Poppy’s expression while laughing was more a smirk than a



ENTERFACE’12 SUMMER WORKSHOP - FINAL REPORT; PROJECT P2 : LAUGH MACHINE 32

Condition

Degree of Agreement

T T T T
Positive Emotional  Believeability  Beliefs on Cognition Social Experience
Experience

Dimensions of the Avatar Interaction Evaluation Form

Fig. 16. Profiles of the means in the AIEF scales for the three experimental
conditions separately

laugh”; subject 21: “it’s hard to act naturally when watching
a film when you feel like you should laugh”). Seventeen par-
ticipants responded to what was liked best about the session.
Best liked was the laughter of the virtual agent through the
headphones (it was considered amusing and contagious; three
nominations), the video (five nominations), the set up (four
nominations) and one participant stated: “It was interesting to
see in what situations and in what manner the virtual agent
responded to my laughter and to funny situations respectively”
(subject 12).

XI. COLLECTED DATA

The multimodal laughter corpora of human to human inter-
actions are rare. Even more seldom are corpora of human-
machine interaction that contain any episodes of laughter.
The evaluation of our interactive laughter system gave us the
unique opportunity to gather new data about the human behav-
ior in such human-machine interactive scenario. Consequently,
we have collected multimodal data from participants to our
experiments. In more details our corpus contains:

« audio data, recorded by the Kinect at 16kHz and stored

in mono WAVE files, PCM 16bits

« Kinect depth maps

e two web cameras

o data on the shoulders movement extrapolated from the

video stream (for this purpose two small markers were
placed on the shoulders of each participant)

All these data can be synchronized with the context (see
Section IX-C2) and the agent reactions. The collected corpus
is an important result of the Laugh Machine Project. It will be
widely used in the ILHAIRE project and will become freely
available for the research purposes.

XII. CONCLUSIONS

The first results of the evaluation experiment are highly
promising: it was shown that the three conditions elicited

different degrees of positive emotions in the participants, the
amount of social interaction induced, as well as the cognitions
and capability assigned to the agent. Also, the believability
differed for all three conditions. It was shown that the in-
teractive condition yielded the most positive outcomes on all
dimensions, implying that the feedback given to the participant
by mimicking his or her laughter is best capable of creating a
“mutual film watching experience” that is pleasurable.

In sum, expressing laughter increases the positive expe-
rience in the interaction with an agent, when watching an
amusing video (both laughter conditions elicited more posi-
tive emotions), compared to the fixed speech condition. The
fixed speech condition yielded numerically lowest means on
the AIEF dimensions, apart from the dimension “beliefs on
cognition”, where the means where as high as in the interactive
condition, implying that speech leads to the assignment of cog-
nitive ability equally as much as responding to the participant’s
behavior. Naturally, the fixed speech conditions should yield
the lowest scores, as there was no laughter expressed in this
conditions and some items targeted the contagiousness and
appropriateness of the laughter displayed by the agent.

Obviously, in the interactive condition, the amount of laugh-
ter displayed by the agent varied for each participant, de-
pending on how many times the participants actually laughed.
Therefore, the agent behaved similar to the participant, which
seems to be natural and comfortable for the participant.
Nevertheless, the current state of data analysis does not allow
to differentiating between individuals who displayed a lot of
laughter—and consequently had a lot of laughter feedback by
the agent—and individuals who showed only little laughter—
and received little laughter feedback by the agent. An in depth
analysis of the video material obtained during the eNTER-
FACE evaluation experiment will allow for an investigation
of how many times the participants actually laughed and how
this influenced the perception of the setting. This will be done
by applying the FACS [39]. Further, an analysis of the eye
movements (gaze behavior) will allow for an estimation of
the attention paid to the agent.

The results of the trait and state cheerfulness, seriousness,
and bad mood variables clearly show the importance of in-
cluding personality variables into such evaluation experiments.
Especially state bad mood influenced the interaction and latter
perception of the virtual agent, leading to a mood dependent
bias. Individuals with high scores in state bad mood before
the experiment evaluated the virtual agent less favorably. This
is likely due to their enhanced threshold for engaging in
cheerful/humorous situations/interactions and—in the case of
grumpiness—their unwillingness to be exhilarated and—in the
case of depressed/melancholic mood—the incapability to be
exhilarated. Therefore, personality should always be controlled
for in future studies. Generally, there was sufficient variance
in the gelotophobia scores, even in the little sample obtained
in the evaluation. Gelotophobia showed some systematic re-
lations to the dimensions of the AIEF. For future studies,
the assessment and control of gelotophobia is essential to get
unbiased evaluations of an agent. Furthermore, those results
might help the understanding of the fear of being laughed at
and how it influences the thoughts, feelings and behavior of
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individuals with gelotophobia.

Nevertheless, more participants are needed to test the
hypothesis on the influence of the condition on the AIEF
dimensions in order for any statistically significant differences
between the conditions to be found. To improve the experi-
mental set up, challenges from eNTERFACE, as well as the
participant’s feedback will be integrated to optimize the design
and procedure. For example, the stimulus video consisted of
only one type of humorous material. It is well established in
psychological research that inter-individual differences exist
in the appreciation of types of humor. Therefore, a lack of
experienced amusement on the side of the participant might
also be due to the disliking of candid camera clips, as one
specific type of humor. Any manipulation by the experimental
conditions should not be overshadowed by the quality/type of
stimulus video. Therefore, a more representative set of clips
with sound is needed (presented in counter-balanced order,
also extending the overall interaction time with the virtual
agent).

Furthermore, it needs to be clear to participants beforehand,
what the virtual agent is capable of doing. In the beginning
of the experiment, the virtual agent should display some
laughter, so the participant knows, that the virtual agent would
be capable of showing this behavior. This ensures, that the
participant will not be solely surprised and amused by the fact,
the virtual agent can laugh, when it eventually does during
the course of the film. If this information is not available
to participants, it might be that the amusement is only due
to the excitement/pleasure of the technical development of
making a virtual agent laugh. Ruch and Ekman’s [21] overview
on the knowledge about laughter (respiration, vocalization,
facial action, body movement) illustrated the mechanisms
of laughter, and defined its elements. While acknowledging
that more variants of this vocal expressive-communicative
signal might exist, they focused on the common denominators
of all forms but proposed distinguishing between laughing
spontaneously (emotional laughter) and laughing voluntarily
(contrived or faked laughter). In this experiment, only displays
of amusement laughter (differing in intensity and duration)
were utilized. Further studies may also include different vari-
ants of types of laughter.

On the technical side, the biggest outcome of the project is
a full processing chain with components that can communicate
together to perform multimodal data acquisition, real-time
laughter-related analysis, output laughter decision and audio-
visual laughter synthesis. Progresses have been accomplished
on all these aspects during the Laugh Machine project. We
can cite the development of the respiration sensor and the
integration of all input devices in a synchronized framework,
which will enable multimodal laughter detection; the construc-
tion of a real-time, speaker independent, laughter intensity
estimator; the design of the first dialog manager dealing with
laughter; the first advances in acoustic laughter synthesis with
the introduction of HMM-based processes; the four different
animation techniques that have been implemented; or the
unique database of humans interacting with a laughing virtual
agent that has been collected.

Each of these components can be improved and several

issues arose during the experiments. Without going into
details for each of the involved components, future works
will include: improving the laughter detection and intensity
computation with the help of visual and respiration signals;
reducing the communication delays between the computers
hosting the different modules; better balancing the influence
of the context in the dialog manager; extending the range
of output laughs by allowing laughs to be generated or
modified on the fly; ensuring that all experimental data can be
recorded flawlessly; or adapting the virtual agent’s behavior to
the participant’s personality (e.g., gelotophobe) and mood to
maximize the participant’s perception of the interaction. Also,
future agents may not only include facial expressions and vocal
utterances, as laughter also entails lacrimation, respiration,
body movements (e.g., [49]), body posture and vocalization.
However, despite all the identified issues, the first evaluation
results are positive. This is very encouraging and indicates
that the full LaughMachine system, while imperfect, is already
working and providing us with both a nice benchmark and a
reusable framework to evaluate future developments.
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Human motion recognition based on videos

Dominique De Beul

Abstract—Human motion recognition is implemented in many
real time applications. In this paper, a non real time human
motion recognition was performed based on recording files (bvh
files and Kinect) by using support vetor machines and artificial
neural networks. The results showed that the artificial neural
networks had a better recognition rate than the support vector
machines.

Index Terms—Artificial neural networks (ANN), human mo-
tion, Kinect, machine learning, non intrusive method, support
vector machines (SVM).

I. INTRODUCTION

The recognition of human motion takes more and more
places in our life thanks to the technology evolution. Human
motion recognition has applications in many domains such
as robotics, visual surveillance, content-based video database
query and retrieval, human-computer interaction. The human
motion recognition identifies the actions performed by body
movement of human beings [1].

Motion can be analysed by intrusive methods or by non
intrusive methods. Intrusive methods are used by placing
optical or magnetic items on the subject. These methods
can disturb or influence the subject in action. Non intrusive
methods which use 2D or 3D cameras eliminate this drawback
but provide less accuracy.

The skeletal joints coordinates supplied by the Kinect 3D
camera makes it easier to model the human body in movement.
A lot of attention is being given to recognition in real time
[2]-[6], but what about the recognition from files recorded.
To our knowledge, not enough research has showed a deep
interest in this direction. Our perspective is to create a data
set representing motion from dancers. Questioning of all data
will be undertaken by a graphical expression e.g drawing a
motion. This paper is the first step to reach our goal.

Many methods are employed in human motion recognition.
Let us mention the ontologies which represent the human
motion by using concepts and semantic rules and by following
dance notation such as Benesh [7] or Laban [8]. In machine
learning, methods as artificial neural networks [9], support
vector machines (SVM) [10], hidden markov models (HMMs)
[11], K-nearest neighbor (KNN) [12] and Bayes classification
[13] are commonly implemented.

In this context, the main goal of this work was to study
human motion recognition coming from the Kinect and trans-
formed in BVH files (Fig. 1). Another objective was to
compare 2 recognition methods: artificial neural networks and
support vector machines, in real time and in non real time.

D. De Beul is with the Computer Science Department, Faculty of Engi-
neering, University of Mons, Belgium.

BVH file

(non real time)

Fig. 1.

Data transformation from Kinect to BVH files.

II. MATERIALS AND METHODS
A. Data acquisition and processing

Data of human skeleton motion was supplied by the
Kinect camera at the rate of 30 fps to the Brekel software
(www.brekel.com) which changed them in BVH (Biovision
hierarchy) files. To represent the skeleton, 23 joints per frame
were used, and four types of motion were studied: the walking,
the arms, the legs and the arms/legs motion (Fig. 2). Noted
that only the walking motion moves the whole skeleton.

140
120

120
100

100

40

300\\\/ 40
- - 20
20 320 o

-0 g

-340 -z20

Fig. 2. Skeleton representations: examples of walking motion (left) and arms
motion (right).

The BVH format was divided in 2 parts (fig. 3,4), the first
specified the skeleton hierarchy such as the parent joints, the
offset, and the second part provided motion data for each
joint such as the Euler angles. Matlab R2011a (Mathworks)
was employed to calculate the products of the transformation
matrices of every parent joint (except for the root) to find
the joint coordinates in the Kinect reference system [14].
The speed of every joint was taken into consideration for the
temporality representation.

Seven people were involved in the video recordings, each
had made 4 types of motion during 2 minutes. The 10 first
seconds of 5 video recordings were taken for the learning
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phase. For the test phase, 2 seconds were chosen randomly
from the 2 others video recordings.

HIERARCHY
ROOT Hips
{
OFFSET -7.166 21.603 -287.920
CHANNELS 6 Xposition Yposition Zposition Zrotation
Mrotation Yrotation
JOINT LeftUpLeg

OFFSET 9.559 0.000 -0.000

CHANNELS 3 Zrotation Xrotation Yrotation
JOINT LeftLeg

{

Fig. 3. Hierarchy part: in this example LeftUpLeg joint depends on the Hips
and LeftLeg joint depends on the LeftUpLeg. Offsets are given and don’t
change during the motion.

MOTION

Frames: 3692

Frame Time: 0.0333333

-4.85759 92.5133 -283.24 -1.61071 17.1168 16.0006
-0.482831 6.58091 0.60553383 3.79237 -11.7427
0.674913 1.00486e-07 -1.81736e-08 4.7216e-07
1.00059 5.29579 -0.0923595 1.25669 -2.56676
0.100948 -7.13941e-08 -1.19396e-06 -4.64743e-07
-5.48669e-07 -1.77784e-06 1.4736%9e-05 0 0 0
16.2893 -3.20818 14.2277 -9.87954 -17.5379 3.7434
5.75159e-09 1.86537e-07 1.45938e-06 0 0 0 -16.9417
4.13677 11.1494 10.2383 -19.3523 10.3552
-6.76001e-08 3.94474e-09 -3.94002e-09 -0.212399

-1.11817 -0.00414335 1.15099e-07 -5.15878e-07
|-9.242e-07
Fig. 4. Motion part: in this example the first frame is showed. After the

frame quantity and the frame time (in seconds), 57 numbers represent the
skeleton.

B. Supervised learning model: Support vector machines

Support Vector Machines (SVM) were used to discriminate
between 2 binary classes linearly separable by maximizing
the distance separating the hyperplane and the closest data
so called hard margin [15]. The soft margin was obtained by
relaxing constraints and by tolerating a margin error. Equation
1 represent the optimisation problem.

m
minuijf?ize %||w||2 +C z;&‘
i
subject to:  y; ((w-x;) +b) > 1-¢; (1)
£& >0
t=1,...,m

Where w represent the weight vectors, C' the regularisation
constant, &; the margin error, (z;,y;) are the training set and
(w - x;) is the inner product.

The model was calculated with the LIBSVM library

[16] by using the soft margin with the radial basis function as
kernel and n-fold cross validation. The strategy one against
one was adopted for the multi-class learning.

C. Supervised learning model: Artificial Neural Networks

Artificial neural networks were employed for data classifi-
cation. To learn, a network decreased the mean squared error
(MSE) by using a backpropagation algorithm which adjusted
the synaptic weights from each neurons [17]. Our networks
were builded from the Matlab neuronal toolbox network.

The first network was created with 1 hidden layer of 10
neurons and the second with 2 hidden layers of 10 neurons
for each layer. Data of 5 video recordings were employed,
70% for learning, 15% for validation and 15% for testing.
Sigmoidal functions and scaled conjugate gradient backprop-
agation algorithms were used for both networks.

III. RESULTS

Ten-fold cross-validation were employed for the SVM
model. A MSE=0.0044 at 318 epochs was determined in the
validation phase for the neural network with 1 hidden layer and
a MSE=0.0028 at 258 epochs (iterations) for the second neural
network. Each type of motion was represented by 4 classes
(CL1: Walking, CL2 : Arms, CL3 : Legs, C : Arms/Legs
motion).

CL1 | 48(80%) 4 6 2
CL2 0 57(96%) 0 3
CL3 0 0 60(100%) 0
CL4 0 1 3 56(94%)
221(92%)
CL1 CL2 CL3 CL4 Total
Fig. 5. Confusion matrix (Test): SVM - C=512 and v = 0.03125
CL1 | 221(100%) 0 0 0
CL2 0 226(100%) 0 0
CL3 3 0 238(98.8%) 0
CL4 1 0 0 221(99.5%)
906(99.6%)
CL1 CL2 CL3 CL4 Total
Fig. 6. Confusion matrix (Test): 1 hidden layer neural network
CL1 | 221(100%) 0 0 0
CL2 0 227(100%) 0 0
CL3 0 1 238(98.3%) 3
CL4 3 0 0 238(98.7%)
924(99.2%)
CL1 CL2 CL3 CL4 Total
Fig. 7. Confusion matrix (Test): 2 hidden layers neural network

IV. DISCUSSION

The recognition rates obtained by the artificial neural net-
works are better than those obtained for the SVM. To improve
these rates, the time sequences were lowed from 10s to 2s.
Compared with the human neural networks, an artificial neural
network has to recognize quickly a short video sequence.
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Two artificial neural networks were presented, the confusion
matrices (Fig. 6 and 7) show that the network with 1 hidden
layer has a more interesting recognition rate. On the other
hand, the convergence speed is better for the 2 hidden layers
network as showed in Fig. 8 and 9.

Columns 1 through 10

0.0557 0.0634  0.0632 0.2079 0.2626 0.4146 0.2559 0.2018 0.1053 0.3080
0.9921 0.9675 09458 0.9025 0.8802 0.8144 0.7016 0.8581 0.9086 0.8406
0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0006 0.0008  0.0011 0.0005 0.0004 0.0003 0.0005 0.0006 0.0008 0.0004
Columns 31 through 40
0.9937 09915 09875 0.9809 0.9663 0.9741 0.9951 0.9920 0.9786 0.9928
0.0039 0.0144  0.0263 0.0411 0.2021 0.4991 0.1659 0.2106 0.4125 0.1848
0.0001 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0001 0.0001 0.0001  0.0002 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000
Columns 51 through 60
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0113 0.0075  0.0072 0.0061 0.0057 0.0039 0.0039 0.0023 0.0029 0.0057
0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fig. 8. Example of Walking motion with 1 hidden layer. Each row represent
a frame and each line represent the motion classes (line 1: walk, line 2: arms,
line 3: legs, line 4: arms/legs).

Columns 1 through 10
0.9983 0.9990  0.9998 0.9999 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999
0.0695 0.0546  0.0133  0.0050 0.0056 0.0025 0.0017 0.0037 0.0049 0.0039
0.0000 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0001 0.0001 0.0001  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Columns 31 through 40
0.9997 0.9999  0.9998 0.9996 0.9996 0.9996 0.9999 0.9999 0.9996 0.9998
0.0001 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0014 0.0054  0.0144 0.0297 0.0234 0.0121 0.0011 0.0016 0.0004 0.0001
Columns 51 through 60
0.9999 0.9999  0.9998 0.9999 0.9999 0.9999 0.9999 1.0000 1.0000 0.9999
0.0001 0.0001 0.0005 0.0001 0.0003 0.0001 0.0001 0.0000 0.0000 0.0002
0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fig. 9. Example of Walking motion with 2 hidden layers. Each row represent
a frame and each line represent the motion classes (line 1: walk, line 2: arms,
line 3: legs, line 4: arms/legs).

In [18], the authors propose for the human motion recogni-
tion in videos a method which is based on localized space-time
features and using a SVM algorithm. For the walking motion
(Table I), 83.8% recognition was found and for the waving
hand, 73.6% recognition was found (which is assimilated to
our hand movements). In our case, 82% of recognition is
found for the walking motion and for the arms motion, 96% of
detection is found using SVM. The neural networks provided
100% of detection for both recognition.

Zhang et al. [3] use a 4-dimensional local spatio-temporal
feature that combines both intensity and depth information.
Latent Dirichlet allocation with Gibbs sampling was used as
the classifier. For the walking motion, 92% recognition was
found and for the waving hand, 95% recognition was found.

Xia et al. [5] present an approach that modelize the joint
by using the depth maps. The prototypical poses of actions
were found by the reprojected action depth sequences using
LDA and then clustered into k posture visual words. With this
approach, the recognition reach 96,5% for the walk motion
and 100% for the wave motion.

V. CONCLUSION

In this paper, we wanted to recognize human motion such
as walking, arms, legs and arms/legs motion coming from

Walking | Waving hand
Schuld et al. 83,3% 73,6%
Zhang et al. 92% 95%
Xia et al. 96,5% 100%
TABLE I

COMPARISON OF HUMAN MOTION RECOGNITION. SOURCE: SCHULD ET

AL. [18], ZHANG ET AL. [3], XIA ET AL. [5].

our BVH files data set supplied by the kinect and the Brekel
software. We focused on 2 main approaches: support vector
machines (SVM) and artificial neural networks (ANN). Our
study showed that the ANN provided better results than the
SVM. A comparaison has been done using real time and non
real time SVM and ANN methods, we could note that the
results are better with our methods. For our future works we
plan to use the ontology apply to the BVH files and compare
to the machine learning algotithm SVM and ANN. We want
to improve our data set by including complex motion such as
body rotation or half rotation but also discrimate left arm/leg
and right arm/leg.
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Socially Aware Many-to-Machine Communication

Florian Eyben, Emer Gilmartin, Cyril Joder, Erik Marchi, Christian Munier, Kalin Stefanov,
Felix Weninger, Bjorn Schuller

Abstract—This reports describes the output of the project P5:
Socially Aware Many-to-Machine Communication (M2M) at the
eNTERFACE’12 workshop. In this project, we designed and
implemented a new front-end for handling multi-user interaction
in a dialog system. We exploit the Microsoft Kinect device for
capturing multimodal input and extract some features describing
user and face positions. These data are then analyzed in real-time
to robustly detect speech and determine both who is speaking
and whether the speech is directed to the system or not. This new
front-end is integrated to the SEMAINE (Sustained Emotionally
colored Machine-human Interaction using Nonverbal Expression)
system. Furthermore, a multimodal corpus has been created,
capturing all of the system inputs in two different scenarios
involving human-human and human-computer interaction.

I. INTRODUCTION

OCIAL competence, i.e., the ability to permanently an-

alyze and re-assess dialogue partners with respect to
their traits (e.g., personality or age) and states (e.g., emotion
or sleepiness), and to react accordingly (by adjusting the
discourse strategy, or aligning to the dialogue partner) remains
one key feature of human communication that is not found
in most of today’s technical systems. Hence, the SEMAINE
project! (Sustained Emotionally colored Machine-human In-
teraction using Nonverbal Expression) built the world’s first
fully automatic dialogue system with ’socio-emotional skills’
realized through signal processing and machine learning tech-
niques. It is capable of keeping sustained conversations with
the user, using very shallow language understanding basically,
reacting to emotional keywords and allowing simple dialogue
acts yet advanced techniques for recognition of affect and
non-linguistic vocalizations.

Still, the system is limited to interaction with a single
user however, in many real-world scenarios, human-computer
interaction with multiple users, and hence, recognizing traits
(e.g., personality) and affect-related states (e.g., interest) of
the individuals and of the group as a whole, is desirable. Such
scenarios include emotional agents incorporated into robots
acting as museum guides, or information kiosks. Yet, the
generalization from 1 to N system users comes with a variety
of ‘grand challenges’ the following is to be understood as a
non-exhaustive list, reaching from front-end to back-end:

1) Speech source localization. Among other applications,
this is useful for feedback, such as the avatar / robot
turning its head to the person speaking.

Florian Eyben, Cyril Joder, Erik Marchi, Felix Weninger and Bjorn Schuller
are with the Technische Universitdt Miinchen, Germany

Emer Gilmartin is with the Trinity College Dublin, Ireland

Christian Munier is with the Universitit Bielefeld, Germany

Kalin Stefanov is with the KTH Royal Institute of Technology, Stockholm,
Sweden

Uhttp://www.semaine-project.eu/

2) Technical robustness to non-stationary background noise
(transient noise, background speakers) and reverberation
in real-world hands-free application scenarios (such as
trade fairs, museums etc.)

3) Speaker diarization. This is required for the character to
access the interaction history with individual speakers.
For instance, it can be used to detect that a person has
not been speaking for a longer time; the main challenge
is handling overlap between speakers.

4) Even in case of perfect speech detection and absence
of overlap or background noise, speech may not be
addressed to the virtual agent, but to other humans (side
talk), or simply to the speaker itself (self directed talk).
This can easily lead to erroneous actions taken by the
system.

5) Multi-talker recognition of affect and speech from cross-
talk, i. e., in case that system users are speaking simul-
taneously.

6) Appropriate strategies for dialogue management and
adaptation of visual agent behavior, such as ’integrating’
users showing a low level of interest while preserving
high levels of interest of other users.

Clearly, addressing all these challenges and implementing
solutions was beyond the scope of a four week targeted re-
search project. Hence, the M2M project (socially aware Many-
to-Machine communication) has focused on some aspects of
2 through 4 in the above list. Precisely, we extended the
capabilities of the SEMAINE system to cope with a hands-
free scenario where multiple users interact with the system
in the presence of background talkers, environmental noise
and reverberation, yet assuming little to no overlap between
the user utterances targeted to the system. We took advantage
of the Microsoft Kinect device’ for capturing multimodal
input and performing some low-level signal treatments. In the
result, the SEMAINE system exploits visual as well as audio
cues to detect the presence of one or several users and to
attribute each utterance to one of them. Furthermore, ‘off-talk’
utterances, i.e. utterances which are not directed to the system,
are detected. Finally, a corpus of multi-user human-human
and human-system scenarios have been recorded, to assess
the performance of speaker diarization and off-talk detection
systems.

The rest of this report is organized as follows: Background
work on emotional virtual agent is introduced in Section II.
Section III presents an overview of the system resulting from
the project. Then, the main functionalities implemented are
detailed in Sections IV through VII. The recorded corpus is
described in Section VIII, before some conclusions are drawn

2www.xbox.com/kinect/
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in Section IX.

II. BACKGROUND WORK

Aiming to make interaction with virtual agents more natural,
a lot of research effort has been invested to equip dialogue
systems with social capabilities that go beyond simple verbal
skills. These capabilities include aspects of communication
that are emotion-related and non-verbal [1]. So far, most sys-
tems are tailored for a one-to-one dialogue situation in which
one user has a conversation with one virtual agent. Besides
purely speech-based systems, also multimodal frameworks
considering for example head movements and facial expres-
sions are becoming popular. The SEMAINE system is one
example for a (non-task-oriented) multimodal dialogue system
that is sensitive to the user’s emotion, non-verbal behavior,
and affective cues, trying to recognize the user’s state and
react to it appropriately via multimodal backchannels [2] and
feedback [3]. This also includes natural listener behavior such
as head nods, smiles, or short vocalizations such as uh-huh or
wow. Further, the agent has to determine when to ’take the
turn’ [4] and produce utterances that fit the dialog context. The
’Sensitive Artificial Listener’ scenario used in the SEMAINE
system [5], [6] involves four different virtual characters, each
of them representing a different emotional state, i.e., a different
quadrant in the valence-arousal space. The virtual agents
try to induce ’their’ emotion in the user, meaning that they
have to recognize and display affect. Emotion recognition in
multimodal systems is usually based on low-level features
characterizing the user’s voice, head movements, and facial ex-
pression [7]-[9]. As a first step for speech feature generation,
voice activity detection has to be applied in order to extract
meaningful acoustic features only in regions where the user
is talking. In most speech-based emotion recognition engines,
features are generated by applying statistical functionals to
contours of acoustic low-level descriptors. Among the low-
level descriptors are commonly used features such as loudness,
fundamental frequency, probability of voicing, Mel-Frequency
Cepstral Coefficients (MFCC), and other features based on
the signal spectrum [10]. The functionals include common
statistical descriptors such as mean, standard deviation, and
other analytical descriptors. Automatic speech recognition
(ASR) and keyword spotting systems employed for natural
human-machine dialog situations have to be noise robust and
tailored for spontaneous and emotional speech containing non-
linguistic vocalizations such as laughter, sighing, breathing,
etc. [11], [12]. These requirements have motivated a lot of
research investigating novel speech recognition approaches
that go beyond standard hidden Markov modeling [13], [14].
In order to enable combined acoustic and linguistic emotion
recognition, bag-of-words features can be computed from the
ASR output [15]. As an alternative to categorical emotion
recognition based on classes such as “happiness’, ’anger’,
’boredom’ etc., emotions can also be modeled in a dimensional
way by using a continuous scale for affective dimensions like
arousal, valence, expectation, intensity, and power in com-
bination with regression techniques such as Support Vector
Regression or neural networks with regression outputs [16].

Video Tracking
(skeleton, head, lips)

Audio Feature
Extraction

User Presence
Detection

Voice
Recognition

‘Audio-Visua
Voice Activity
Detection

Multimodal
Speaker
Diarization

On- / Off-Talk
Classification

Dialogue, Behaviour
Manager

Fig. 1. Overview of the system: simplified flowchart. The colored components
are the new modules created in the project.

As emotion tends to evolve slowly over time, context-sensitive
classification or regression frameworks that model the evolu-
tion of emotion usually prevail over static approaches [17],
[18]. In addition to typical emotions or affective dimensions,
a socially competent virtual agent also profits from recognizing
and reacting to user-specific traits such as personality [19] and
states such as the perceived ’level of interest’ or paralinguistic
information like age and gender [20], [21]. In a hands-
free interaction scenario, the influence of reverberation and
background noise on ASR and affect recognition has to be
taken into account [22], [23]. Furthermore, recognition of the
traits and affective states of multiple users has rarely, if ever,
been investigated, despite the progress in speaker diarization
[24].

III. OVERVIEW OF THE SYSTEM

A simplified flowchart of the system resulting from the
M2M project is represented in Figure 1. As already mentioned,
the M2M project has focused on the front-end part of a virtual
conversational agent system, in order to extend the possibilities
of the existing SEMAINE system for multi-user interaction.

The capabilities of this new front-end are manifold, and
comprise:

1) capture of the multimodal input through the Kinect

device

2) audio-visual speaker detection and localization

3) audio-visual voice activity detection (VAD)

4) speaker diarization

5) audio off-talk detection.

The 1-st element captures all the input modalities of the
Kinect. It consists of three raw sensor inputs (color video,
depth video and multi-channel sound), as well as some other
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data streams extracted from the raw data (skeleton joints, facial
points and enhanced single-channel sound with the source
Direction Of Arrival (DOA)).

The 2-nd module relies on the detected user skeletons to de-
termine if one or several users are present. This information is
then used by the following elements. The speaker localization
is then performed by matching the sound DOA to one of the
detected users. The audio-visual VAD component combines
the existing audio-only VAD with visual information about
the position and movements of the users.

The 4-th item is performed by an online audio speaker
diarization algorithm, which can be controlled by the speaker
position information. Finally, off-talk detection is achieved
by an audio classification approach, analyzing short time-
windows of the audio input.

The described elements have been implemented in the C++
language, as components of the openSMILE software [25].

openSMILE is a flexible toolkit for on-line and off-line
audio data analysis. It’s main purpose is audio feature ex-
traction for speech recognition, paralinguistic audio analysis,
and music information retrieval. Components can exchange
data via an efficient shared memory component, enabling re-
use and sharing of data and a flexible data-flow between
components. Many components are currently included for data
1/0, acoustic signal processing, extraction of acoustic low-
level descriptors, computation of statistical functionals, and
classification. The toolkit contains components to read and
write data to various common file formats, such as CSYV,
Weka ARFF format, and Hidden Markov Toolkit (HTK)
binary data format. Acoustic descriptors include energy, pitch,
voice quality parameters, cepstral coefficients, linear predictive
(LP) coefficients, spectral descriptors such as flux, semi-tone
chroma and CENS, etc. Further, a set of classifiers including
Support-Vector Machines (LibSVM), Long Short-Term Mem-
ory Recurrent Neural Networks (LSTM-RNN), and Hidden
Markov-Models (HMM) is contained as well as voice activity
and turn detector components. Basic networking functionality
is included, which allows for receiving audio input over a
network and sending back classification results or acoustic
descriptors over the network.

IV. KINECT INPUT CAPTURE AND LOW-LEVEL
PROCESSING

A Kinect for Windows device contains the following hard-
ware components

¢ Microphone array
« Color sensor

o IR emitter

« IR depth sensor

« Tilt motor

The data generated by the device is accessed through the
Kinect for Windows SDK that provides tools and APIs for
development of Kinect applications for Microsoft Windows.
The following subsections give a brief outline of the raw data
used throughout the project.

A. Color and Depth Video

The color data is available at two quality levels and in two
different formats. The quality level determines the rate of data
transfer from the sensor where the color format determines
how the streamed color data is encoded (RGB or YUV). Kinect
can stream color data with maximum frame rate of 30 frames
per second. The resolution of the color stream is dependent on
the frame rate and is specified by the ColorImageFormat
Enumeration. For example, Kinect can stream raw YUV
data with resolution of 640 x 480 pixels with frame rate of 15
frames per second.

The depth data stream is composed of pixels which con-
tain the distance (in millimeters) from the nearest object to
the camera plane at that particular coordinate of the depth
sensor’s field of view. The resolution of the depth stream
is also dependent on the frame rate and is specified by the
DepthImageFormat Enumeration.

This project uses RGB color data that is streamed by the
Kinect device with resolution of 640 x 480 pixels with frame
rate of 30 frames per second. The used depth data is streamed
with resolution of 320 x 240 pixels with frame rate of 30
frames per second.

B. Skeleton and Face Tracking

The device can process the color and depth data to identify
up to six human figures in a segmentation map. The segmen-
tation map is a bitmap with pixel values corresponding to the
index of the person in the field of view, who is closest to the
camera at that pixel position. Up to two of these figures can be
fully tracked meaning that the device can locate the joints of
the tracked users in space and track their movements over time
(called skeleton tracking). Furthermore, the Kinect skeleton
tracking is optimized to recognize users that are standing or
sitting, and facing the device.

The Face Tracking SDK together with the Kinect for
Windows SDK enables tracking of human faces in real time.
The face tracking engine analyzes input from a Kinect camera,
and can deduce the head pose and facial expressions in real
time. The face tracking engine tracks 100 facial points (eye
brows, eye contours, nose contour, lip contours, etc.) and can
return the location of these points in the 2D coordinate space
of the color image. Additionally, the engine tracks the 3D head
position and can deduce the pitch, roll, and yaw angles of the
head in real time. Finally, the results returned by the engine
are also expressed in terms of weights of 6 action units (AUs)
and 11 shape units (SUs), which are a subset of what is defined
in the Candide3 model®.

C. Microphone Array and Beamforming

The Kinect has a four channel microphone array. The exact
position of the microphones is not specified, but a rough idea
can be obtained from the ‘specification’ at the Microsoft De-
veloper Network*, indicating that the microphones are placed
with ‘logarithmic’ spacing. The audio input is sampled at

3http://www.icg.isy.liu.se/candide/
“http://msdn.microsoft.com/en-us/library/jj131033.aspx
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16 kHz with 24-bit pulse code modulation (PCM). The Kinect
device performs beamforming, source localization, echo can-
cellation and noise reduction on its own DSP. 11 fixed beams
are available, which range from -50 to +50 degrees in 10
degree increments. The API allows selection of a fixed beam,
automatic selection of the optimal beam, or simply using the
microphones to record 4-channel audio. In the M2M dialogue
system, the automatic beam selection is used, where as for data
collection purposes in the project, also the 4-channel audio
was recorded. Note that it is not possible to record the data
from all 11 beams at once, probably due to limitations of
the DSP’s computing power. Source localization estimates the
source direction along with a confidence in the interval [0,
1]. According to the specification’, users should be positioned
approximately one to three meters from the microphone array,
and noise cancellation and suppression typically provide 30
decibels or more of noise reduction.

D. Integration

For integrating the Kinect input into the SEMAINE system,
it was necessary to extend the openSMILE toolkit. To this
end, an openSMILE input component was developed. The
integration of the audio input is straightforward and can
be implemented simply as a replacement for the standard
microphone input component, delivering the current beam, the
individual microphone signals, or both, as input to the data
memory for further processing. Acoustic echo cancellation and
automatic noise suppression can be simply switched on or off
by means of configuration options. Due to the huge data rate
of the RBG and depth images (several gigabytes per minute),
their transmission in the openSMILE processing chain was
found to create too much overhead. Thus, these data are simply
dumped to files on the hard drive.

V. AUDIO-VISUAL SCENE MODEL

In order to keep track of different users that interact with
the system simultaneously it is crucial to provide a scene
model which integrates sensor inputs from different modalities
(audio and vision). This enables the correct attribution of
utterances to their corresponding user representation in the
model. Moreover, fusion of both modalities allows for deciding
if there is currently a user talking to the system (on-talk) or
if users are talking to one another or to themselves (off-talk).

A. User Presence Detection

The model represents users by a skeleton tracked via the
Kinect device. The information provided through the skeleton
tracking comprises the position in the scene and orientation of
individual skeleton bones. Due to device capabilities tracking
is limited to six simultaneously present skeletons, thus allow-
ing for six users in the scene. If tracking is lost on a user’s
skeleton, either due to adverse conditions or if they move out
of the field of view, the scene model maintains a hypothesis
about the user’s supposed state and position.

Shttp://msdn.microsoft.com/en-us/library/jj131026.aspx

The audio source localization of the Kinect device provides
an azimuth angle to where the currently dominant audio source
is supposedly located and a corresponding confidence measure
(audio source confidence). The user in the scene model that
has the smallest angular distance to the supposed audio source
location is selected as current speaker. A corresponding con-
fidence measure (user presence confidence) is then calculated
from the angular distance of the visually selected user to the
audio source, the proximity of the selected user to the closest
other user in the scene model and from the Kinect’s audio
source confidence.

B. Audio-Visual Voice Activity Detection

To decide if there is currently a user talking to the system
our scene model integrates cues from both the acoustic and the
visual modality. The usual approach in speech recognition is
to use an energy-based acoustic voice activity detection (VAD)
based on the speech signal. Here, we use the acoustic VAD
from the SEMAINE system.

In addition to the skeleton data each user is associated
with face information from the face tracker if available. The
information provided comprises head orientation and anima-
tion unit (AU) coefficients. The animation units describe the
displacement of certain facial features, as for example the lips
and the jaw. Knowing the head orientation it is possible to
hypothesize whether a user is currently looking at or away
from the system. From the animation units an estimate of
the current mouth aperture is computed and integrated over
a period of previous frames, yielding a confidence measure
for the user’s mouth movement.

The overall confidence measure for audio-visual voice activ-
ity is then composed from the acoustic voice activity detection,
the user presence confidence, the confidence for the user
looking at the system and the confidence for movement of
the user’s mouth.

VI. SPEAKER DIARIZATION

The speaker diarization module has to identify in real-time
who is speaking. One of the difficulty of this task is that no
initial information about the speakers is available. In particular,
the identity and number of the possible speakers are unknown
and the corresponding models have to be built “on the fly”.
In order to build this system, we first implemented an audio-
only system, based on a state-of-the-art algorithm, and then
extended it to integrate the additional information from the
audio-visual scene model.

A. Audio-Only Speaker Diarization System

The audio speaker diarization system is based on the al-
gorithm proposed by [26]. It is an on-line approach, which
allows for a real-time identification of the current speaker,
under the assumption that no cross-talk, i. e. at most one
person is speaking at a time. The principle of the algorithm is
as follows:

o The system is initialized with general speech models

(one male, one speaker), which play the role of universal
background models (UBM), as well as a noise model.
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Fig. 2. Flowchart of the audio speaker diarization algorithm.

e At run time, the audio input is continuously compared
to the current models. If the most likely model is a
general speech model, a new speaker model is created
by duplicating the corresponding general model. The
selected model is then adapted to the actual observations.

This principle is illustrated by Figure 2.

As in [26], we use MFCC as features describing the instan-
taneous spectrum and the speaker models are Gaussian Markov
Models (GMM), which are updated after the Maximum A
Posterior (MAP) adaptation scheme. The considered audio
segments consist of a 1s buffer (100 frames).

The initial models have been learned using parts of our
dedicated recorded corpus, which was recorded in the same
condition as the use-case scenarios. This corpus is described in
Section VIII. The training data was composed of spontaneous
speech drawn from two trials of three-person conversations
(2 male and 1 female in each trial), yielding about 19 min of
audio.

B. Integration of the Audio-Visual Scene Model

We extended the audio-only model of [26], in order to take
advantage of the audio-visual scene model described in Section
V. We then exploit the voice activity detector (VAD) output,
the user ID, i. e. the index of the detected user, and the user
presence confidence, which are the outputs of the user presence
detection module.

The flowchart of the modified audio-visual speaker diariza-
tion system is display in Figure 3. In this system, we assume
that the audio-visual cues are more reliable than the audio-only
ones. Thus, they are given the priority on the decision process
and the result of the audio algorithm is not fully trusted. Hence,
the audio models are used to identify the speaker only when
the user presence confidence is low (with respect to a certain
threshold). Furthermore, new audio speaker models are created
only when a new speaker is detected with high confidence by
the audio-visual scene model.

Thus, three cases can arise, depending on the result of the
audio-visual module:

« No speech is detected: the diarization system output the
“noise” source and updates the audio noise model.
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Fig. 3. Flowchart of the audio-video speaker diarization algorithm.

o A user is detected with high confidence: the diarization
system follows this decision. If no GMM is present for
this user, a new one is created by duplicating the most
likely general model. Then, the speaker model is adapted.

o A user is detected with low confidence: the user ID is
not taken into account and the diarization system relies on
the audio information only. The output then corresponds
to the most likely GMM. However, no new speaker model
can be created and the GMM are not adapted. Hence, we
prevent the creation or the update of wrong models, which
could be detrimental to the identification accuracy.

VII. AuDIO OFF-TALK DETECTION

Even though the user presence, head orientation and audio-
visual voice activity detection are well able at robustly iden-
tifying people talking in front of and directed to the system,
there might still be cases where people are not addressing the
system but talking to other people, although they are looking
at the system. Previous studies [27], [28] suggest that people
change their speaking styles depending on their dialogue
partners and that this change is detectable by machines. Thus,
we can discriminate between speech directed to the system
and speech directed to a fellow person by analysing spectral
and prosodic characteristics of the speech.

Adopting a similar approach as in [27], we build an on-
/off-talk classifier component. The component uses a large set
of acoustic features composed of statistics of a broad set of
acoustic low-level descriptors and classifies short segments of
speech with linear kernel Support-Vector Machines (SVM).
The basic idea of this component is, that it shall give further
evidence in addition to the multi-modal voice-activity and user
presence detection. This evidence will come with a certain
lag because a segment of sufficient length (typically 2-5
seconds) is required for analysis. Therefore, the system will
process the incoming speech normally, i.e., do multi-modal
VAD, perform acoustic analysis and emotion recognition, and



ENTERFACE’12 SUMMER WORKSHOP - FINAL REPORT; PROJECT P5 : SOCIALLY AWARE MANY-TO-MACHINE COMMUNICATION 44

cl. as — off on

off 588 53

on 62 166
TABLE I

CONFUSION MATRIX FOR 5-FOLD SCV EVALUATION OF THE
ON-/OFF-TALK DETECTOR ON THE EVEN TRIALS OF THE ENTERFACE
WORKSHOP SYSTEM INTERACTION DATABASE.

do keyword spotting. Only at the stage of interpretation and
agent response generation, the off-talk detection result shall
be considered. If the input was classified as being off-talk
with a high confidence, or multiple segments of the input
are agreeably predicted as off-talk, no agent response shall
be prepared and the user state will not be updated with the
current results - or, if the user state has already been updated,
it shall be reversed. We would like to note at this point, though,
that only the off-talk classifier has been implemented during
the eNTERFACE workshop, but no modification to the agent
behaviour has been implemented. The behaviour suggested in
this section, needs to be implemented into the SEMAINE Java
components.

The acoustic features used for the off-talk classifier are
the same acoustic features that are used in the SEMAINE
system for acoustic emotion recognition. This has been chosen
for performance and simplicity reasons in this first prototype
implementation. Further studies are required to select the
most relevant features, and justify a significant overhead by
extracting more, or different features in parallel to those used
for emotion recognition. 1.882 features are extracted from
overlapping fixed length segments of max. 5 seconds sampled
at a rate of 1 second (the segments are taken from user speech
turns - thus if the turn is shorter than 5 seconds or the total
length is not an exact multiple of 5, the last segment might be
shorter than 5 seconds).

With the data collected at eNTERFACE, a pre-evaluation
experiment was performed for the off-talk detector. 869 in-
stances (fixed length segments - cf. previous paragraph) from
the even numbered trials (2, 4, 6, 8) in the database are used
for this evaluation; 641 off-talk and 228 on-talk instances.
Using a linear SVM with complexity C' = 0.1 for the
Sequential Minimal Optimization (SMO) training algorithm,
an accuracy of 86.8% can be reported for 5-fold stratified
cross-validation (SCV). The confusion matrix is shown in table
1. This shows the feasibility of the approach, at least for the
system demo scenario that was assumed while recording the
database. However, we must note, that the folds are not speaker
disjunctive due to the random, stratified 5-fold split.

VIII. CORPUS: MULTI-USER INTERACTION

In order to provide training and testing data, a corpus of on-
talk and off-talk was collected during the workshop. Speech
types of interest were on-talk - human speech directed at
a computer, and off-talk - speech between humans in the
vicinity of the computer. The corpus comprises samples of
speech directed at the computer from different angles (on-talk),
and conversational human-human speech recorded at various
distances and angles from the computer (off-talk). In all, 11

participants were recorded over 10 sessions, resulting in the
collection of over 1.5 hours of recordings.

A. Recording Conditions

The recording setup was designed to allow the collection of
examples of on and off talk from different speakers at different
angles and distances from the Kinect. Speakers would interact
with one another and with the SEMAINE system.

To achieve this a recording space was set up around a mon-
itor attached to the computer running SEMAINE. Recordings
were made on two Kinect sensors mounted in a vertical stack
on top of the 21” flat screen monitor which displayed the
SEMAINE system user interface.

The floor of the recording space was marked with three
lines radiating from a point directly below the two Kinects.
Two of the lines marked the perpendicular and left and right
edges of the Kinect’s camera’s field of view, while the third
was perpendicular to the screen. The lines were marked along
their length at 80, 160, and 240 cm from the origin. These
markings resulted in nine possible locations for a speaker to
stand - left, right, and centre at three different distances, and
were used to orientate participants during the recordings.

Two scenarios were used for the recordings. In the first,
three participants stood at the left, centre, and right of the
Kinect’s visual range and spoke to one another. Conversation
consisted of short casual exchanges arising from questions
about everyday topics. Participants could speak about subjects
of their choosing or use prompt sheets provided by the exper-
imenters. In this scenario nine exchanges were recorded per
session, with participants changing place after each exchange
so that samples would be collected from the nine possible
positions.

In the second scenario, three participants stood 60-80cm
from the screen and interacted with the SEMAINE system
and with each other, changing angular position at intervals to
allow samples to be collected for all speakers from all three
angles to the machine.

Eleven people participated in the recordings (7 male and 4
females). All speech was in English. All participants regularly
used English in their work, and three were native speakers.
All participants were familiar with speech technology and had
experience of dialogue systems.

The two Kinects were used to collect audio, video and depth
images for each session. Recordings were immediately backed
up to a separate hard drive.

All of the WAV audio recordings were annotated using Praat
[29], in terms of speaker, distance from computer, angular
position of speaker (Left, Centre, Right), and type of speech
(on-talk, off-talk). The data from the annotated recordings
were then used to train and test the speaker diarization system
developed in the m2m project.

IX. CONCLUSION

The project “Socially Aware Many-to-Machine Communi-
cation” has resulted in the implementation of a new front-
end for the SEMAINE dialogue system, which extends its
capabilities for multi-user support. The new system takes
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advantage of the Microsoft Kinect device for capturing and
processing multimodal input in real-time. An interface com-
ponent has been created for importing the raw input signals
(four-channel audio, color video and depth images) as well
as the extracted information (enhanced one-channel audio,
skeleton and facial points tracking) from the Kinect into the
existing openSMILE framework. New algorithms for audio-
visual Voice Activity Detection (VAD), multimodal speaker
diarization and off-talk detection have been implemented in
this framework. The results obtain in preliminary experiments
indicate the potential of our approach for the handling of
a multi-user scenario. Furthermore, a corpus of multimodal
spontaneous interaction recordings has been collected. The
data comprise all the modalities captured by the Kinect, and
correspond to two scenarios of human-human and human-
machine dialogues.

This project opens the path to several possible future work-
ing directions. First, the implementation of new behaviours
which would take into account the multi-user scenarios (such
as turning the “face” to the current speaker or addressing a
specific user) is now possible, thanks to the delivered front-
end. The design of data-driven algorithms for the fusion
of multimodal information can also be considered, instead
of the heuristic rule-based approaches followed in the VAD
and speaker diarization components. Finally, an open-source
version of the created software will be released in the near
future.
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Abstract

In this project, we explore the possibility for an aug-
mented guitar to be used as a controller for the expres-
sive manipulation of reactive synthetic speech. This idea
comes at the intersection of two research frameworks. On
the one hand, we aim at augmenting the electric guitar
by extracting guitar playing techniques directly from the
guitar sound, through an hexaphonic pickup (one micro-
phone per string). On the other hand, we develop the
MAGE software, a unique set of tools for generating high-
quality HMM-based speech synthesis in a reactive way.
Bringing these two technologies together allows us to ex-
plore various mappings between the controller and the
speech synthesis, and propose expressive solutions.
Index Terms: HMMs, speech synthesis, reactive control

1. Introduction

Speech is one of the richest and most ubiquitous modal-
ities of communication used by human beings. Vocal
expression involves complex production and perception
mechanisms. Conversation is a highly interactive pro-
cess, with complex timings and wide-ranging variations
of quality. It is known that speech production properties
have a deep impact on perceived identity and social cues
[1]. This critical role of speech production in our life
makes anybody an expert listener. The synthesis of artifi-
cial speech has been explored for decades to use in many
applications, from the purely functional level to artistic
exploration. However, human’s natural expertise in lis-
tening to spoken content makes speech synthesis a re-
ally complex problem. Recent synthesizers have made
great progress in terms of intelligibility and naturalness
but they are still not providing a completely convincing
vocal experience to users, neither an expressive tool for
artists. In this Section, we describe the various research
problems that lead to this situation, as an introduction
to our concept of fangible speech synthesis and the new
speech synthesis system that we present.

1.0.1. From Speech Production to Social Cues

Understanding voice production requires an interdisci-
plinary approach. It can be seen bio-mechanically as pul-

monary pressure being applied on tensed vocal folds and
the manner of placing the various articulators in the vocal
tract, such as tongue, jaw or lips [2]. The acoustics of this
phenomenon suggest that the volume velocity waveform
generated by the vocal folds vibration propagates through
pharyngeal, oral and nasal cavities with time-varying res-
onance frequencies, called formants [3]. Linguists are in-
terested in how these formants vary over time and their
relation with vocal tract postures that we continuously
browse when we speak, called phonemes [3]. They also
study, what is called prosody [3], how fundamental fre-
quency and amplitude of vocal folds vibration vary over
time, as well as phoneme durations. Phonetical and neu-
rological studies show that upcoming speech fragments
are planned ahead by the brain, and then corrected on-
the-fly by continuously evaluating acoustical and senso-
rial distances from the plan [2].

This active research community has been making out-
standing progresses over the last decades, but it seems
that some aspects of speech production remain misun-
derstood. For example, we do not have an exhaustive
model for vocal folds vibration, because observations in
vivo are nearly impossible. There is also a big debate in
how speech production is influenced by the context, such
as speaker’s emotional state, listener’s reaction or other
surrounding stimuli, because real-life measurements are
intrusive. These issues result in an elusive mapping be-
tween parameters of existing production models and real
social impacts of speech, such as intents or emotions, as
illustrated in Figure 1.

1.0.2. Text-To-Speech and User Interaction

Early research in speech synthesis was firstly trying to
model the physiology of speech production, then manip-
ulating the models according to what was observed in
the vocal tract or on the speech spectrum, such as the
well-known source-filter model [4]. The generalization
of computing in speech synthesis research progressively
benefited to a new approach, detached from physiological
roots, and focused on the systematic conversion from text
to speech. New algorithms from the early 1990s, based
on waveform segmentation and concatenation [5], made
a remarkable leap forward in term of intelligibility and
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Figure 1: Major obstacles remain in order to accurately
map between parameters of speech production models
and perceived intents or emotions.

naturalness, shifting the physiological trend to focus on
speech simulation.

Text-To-Speech (TTS) systems have a common archi-
tecture and work in two steps. First, text is converted
into the narrow phonetic transcription by the Natural
Language Processor (NLP), containing phonemes and
prosody. Then this information is converted into speech
sound by the Digital Signal Processor (DSP) [3], as illus-
trated in Figure 2.
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Figure 2: Text-To-Speech: NLP converts text into the
narrow phonetic transcription, then DSP converts this
transcription into speech sound.

At the time TTS became the main trend, it was not
evident that computing would go mobile so massively.
Retrospectively, we understand how the design choices
underlying TTS — text input and black-boxed generation
of resulting speech — have anchored its use to reading text
on desktop computers. However, mobile computing re-
lies on ubiquitous sensing of user’s context, and user in-
teraction tends to become more natural. Therefore, high-
quality speech synthesis seems to have major issues in
being used “in the wild”. Nowadays there are two main
application types that are prevented to expand because of
these limitations:

1. Context-reactive speech synthesis: our modern life
is encountering an increasing amount of virtual
agents, on the phone, in the car or in public
spaces. Ubiquitous computing brings these sys-
tems to gather a lot of information about our con-
text: location, light/noise conditions, movements,
social connections, etc. Most of this information is
dynamically changing. However, embedded TTS

makes few sense of these context changes, because
the speech production properties can barely be al-
tered, even less on-the-fly.

2. Performative speech synthesis: artificial speech
can be generated from gestural performance, rather
than pre-typed text. This approach has many appli-
cations, such as silent speech communication [6],
speech production replacement for voice-impaired
users, etc. This technique is also interesting for
artistic purposes, as speech is a common medium
used in various disciplines. These situations re-
quire a major breakthrough in speech synthesis
techniques in order to create speech sounds from
non-textual fast-changing inputs.

1.1. Guitar as the Controller

One essential aspect involved in developing a system for
performative speech synthesis is the design of the control-
ling device. One approach to this research is to consider
that the purpose is to design a new instrument for musical
expression, or NIME, here applied to the speech signal.
A common concern in NIME research is the lack of hu-
man practice associated to new instruments. This issue
can trap the design process in a loop where the lack of
a good device prevents good practice to appear and the
lack of good practice prevents a good device to emerge.
In order to avoid such a deadlock situation, many people
have started their NIME design from an existing instru-
ment. Indeed the existing practice can be reused and then
extended for the new purpose. Due to its wide availabil-
ity and contemporary history, the electric guitar has been
a good candidate for such a strategy [7, 8].

In this project, we have decided to use the electric
guitar as the input device for controlling speech synthesis.
It is motivated by the above-mentioned intent to reuse and
extend the existing guitar playing techniques for our new
purpose, but also because we wanted to further explore
the Guitar As Controller hardware/software platform that
we have built in the lab for the last 2-3 years.

1.2. Outline of the Report

In this report, we start describing the speech synthesis
technique we use in this project, called HMM-based syn-
thesis in Section 2. Then we describe the main modi-
fications that we have applied to state-of-the-art HMM-
based speech synthesis in order to create a fully reactive
and controllable sound synthesis system, called MAGE,
in Section 3. Section 4 explains the modifications applied
on the existing Guitar As Controller toolbox and new
mapping strategies that have been developed specially for
controlling speech. Finally we discuss the prototype that
we could assemble and test during the workshop in Sec-
tion 5.



2. HMM-Based Speech Synthesis

Nowadays, the most common approach for achieving
high quality natural speech synthesis is the corpus-based
unit selection technique. In principle, this method relies
on runtime selection and concatenation of speech units
from a large speech database using explicit matching cri-
teria [5]. In direct contrast to the dominance of corpus-
based unit selection, there is an increased interest for sta-
tistical parametric speech synthesis [9]. Statistical para-
metric speech synthesis is based on an model-based para-
metric framework, where speech is generated by averag-
ing sets of similarly sounding speech segments. Indeed,
instead of using real speech samples at runtime, context-
dependent HMMs are trained from the databases of nat-
ural speech, and then speech waveforms are generated
from the HMMs themselves.

2.1. Core architecture of typical system

In a typical statistical parametric speech synthesis sys-
tem, the pre-recorded database is analysed, various pro-
duction parameters are extracted spectral envelopes, fun-
damental frequency and duration of the phonemes - and
used to train statistical models. Usually a maximum
likelihood (ML) criterion is used to estimate the model
parameters [10]. Later these models will generate the
speech parameters for a given targeted text input. Speech
waveforms are produced from the parametric representa-
tions of speech with typical speech synthesis techniques:
subtractive synthesis [11] or harmonic plus noise [12].
Any generative model can be used, however most widely
used are Hidden Markov Models (HMMs) [13], and this
approach is known as HMM-based speech synthesis [10].

In Figure 3 we present an overview of a typical
HMM-based speech synthesis system (HTS) [14], which
consists of a training and a synthesis part.
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Figure 3: Overview of a typical HMM-based speech syn-
thesis system (HTS) [14].
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Figure 4: Decision trees for context clustering [18].

During the training part both spectrum (mel-cepstral
coefficients [15], and their dynamic features) and excita-
tion (logarithmic fundamental frequency (logF0) and its
dynamic features) parameters are extracted from a natural
speech database. These parameters are then modeled by
context-dependent HMMs, taking into account phonetic,
linguistic and prosodic contexts. Multi-space probabil-
ity distributions (MSD) [16] are used to properly model
the excitation parameters which is a variable dimensional
parameter sequence with non continuous pitch values in
unvoiced regions. In order to model speech temporally,
HMMs model the state duration densities by using mul-
tivariate Gaussian distributions [17]. So to handle all the
contextual factors, such as phone identity and stress or
accent related factors that affect the targeted synthetic
speech output, decision-trees based on context clustering
techniques [18] are used, as shown in Figure 4. Mag-
nitude spectrum, fundamental frequency and duration are
modeled independently, therefore there is a different pho-
netic decision tree for each of these features [19].

At the synthesis part, the input text is analyzed and
converted to a context-dependent phoneme sequence.
Then by concatenating the context-dependent HMMs ac-
cording to the generated context-dependent phoneme se-
quence an HMM utterance is constructed. This HMM ut-
terance is used to generate the sequences of spectral and
excitation parameters [20], and by using excitation gener-
ation and a speech synthesis filter (e.g., mel log spectrum
approximation (MLSA) filter [21]) the final speech wave-
form is reconstructed.

2.2. Advantages

Compared to the unit-selection synthesis, statistical para-
metric synthesis offers significant advantages not only
in controlling the synthesis procedure but also in being
much more flexible due to the well defined statistical
modeling process. One of its main advantages is the flex-
ibility in changing its voice characteristics and speaking



Figure 5: Speakers individuality modeled by HMMs, Mi,
where Wi denotes the interpolation weight between the
existing models in order to produce the untrained voice
characteristics, M’.

styles by simply transforming the model parameters. This
is possible through :

e adaptation, mimicking voices by means of maxi-
mum a posteriori (MAP) estimation [22] and max-
imum likelihood linear regression (MLLR) [23].

e interpolation, mixing voices and synthesize speech
with untrained voice characteristics [24] as shown
in Figure 5.

e cigenvoice, producing new voices, [25].

e multiple regression, to control voice characteristics
intuitively [26].

Other advantage is that HTS can easily be adapted in
different languages, contexts and applications [14]. Com-
pared with unit-selection synthesis, statistical parametric
synthesis has a very small footprint, just a few MBytes
[27], since there are no real speech samples used, only
the statistics of acoustic models are stored and fewer tun-
ing parameters since both modeling and synthesis pro-
cesses are based on mathematically well-defined statisti-
cal principles. However the main drawbacks of statistical
parametric synthesis is the quality of the final synthesized
waveform. The reason for this quality degradation seems
to be the vocoders used, the acoustic modeling accuracy
and finally the over-smoothing [28].

3. Reactive HMM-Based Speech and
Singing Synthesis

As the new trends in understanding expressivity in speech
are being explored, and the need for real world speech
and singing synthesis applications such as entertainment
and gaming applications, silent speech communication
and performing arts application as well as assistive appli-
cations for speech impaired people. However one might
notice that a real solid platform for performative speech
and singing synthesis is missing. The challenges of such

a platform though are on the one hand the reactive pro-
duction of expressive speech and the adaptability and la-
tency of the speech synthesis and on the other hand how
to provide a meaningful gestural control mechanism.

In traditional HMM-based speech synthesis, as de-
scribed in Section 2, a certain amount of text is required
in advance to be processed and converted into speech as
a whole target but during this text to speech conversion
process any external influence is rather limited. This limi-
tation prevents to adapt to any external solicitation within
the sentence as it is being synthesized. Thus, we decided
to build MAGE, which proposes the generation of speech
parameters within a smaller look-ahead window rather
than the whole available text. This approach allows to
infer on speech outputs at various production levels and
time scales. However, such a system has totally different
requirements than the original one; it needs to have a re-
active programming architecture, and to be both listener-
specific and context-aware. To our current knowledge,
MAGE is the first platform for reactive programming of
speech and singing synthesis able to address these issues,
allowing reactive prosodic and contextual user control.

3.1. Short-Term Speech Parameter Trajectories

As inherited form the original system HTS; MAGE also
has a training and a synthesis part. For both sys-
tems the training part is identical, as described in [28],
but their fundamental difference lays in the synthesis
part. During the synthesis time of HTS, the input
text is analyzed and converted to a context-dependent
phoneme sequence, then according to this sequence,
context-dependent HMMs are concatenated, construct-
ing an HMM utterance. Then this HMM utterance is
used to generate the sequences of spectral and excita-
tion parameters by maximising the probability of the
speech parameter sequence [28]. Consequently, in HTS
the smallest accessible time scale is the complete targeted
word sequence. Finally, the targeted speech output is re-
constructed by using excitation generation and a speech
synthesis filter, here Mel Log Spectrum Approximation
(MLSA) filter [21] with pulse-train or white-noise exci-
tation.

In direct contrast to HTS synthesis part, in MAGE
the observation window is reduced, from all the avail-
able phoneme sequence to just a sliding window of two
phonemes. More specifically, as the available phonemes
are being streamed as input to MAGE, only the new
phoneme and the previous phoneme are used to con-
catenate the context-dependent HMMs and construct an
HMM utterance. Then this HMM utterance, consisting
only of the context-dependent HMMs of two phonemes is
used to generate the corresponding sequences of spectral
and excitation parameters. Then, by using the maximisa-
tion in Equation 2, as described in [28] the speech param-
eter trajectories are generated. A result of the reduced ob-



servation window approach is that the generated speech
parameter trajectories do not correspond to the overall
maximum of probability (HTS), but only the concatena-
tion of locally-maximized speech parameters (MAGE).

¢* = argmax P(q | A\*,T) @)
q

O = argmax P(O | ¢*, \*,T) 2)
0

where O and ¢ are respectively the sequence of speech
parameters and the sequence of states, ¢* and \* respec-
tively the estimated sequence of states and the concate-
nated left-to-right context-dependent HMMs of the 2-
phoneme window, O the sequence of locally-maximized
generated speech parameters, and T is the time frame cor-
responding to the first label of the 2-phoneme window on
which O is computed.

By using a 2-phonemes window for the speech pa-
rameter trajectory generation, MAGE opens the enclosed
synthesis loop of HTS, and the initial accessible time
scale of the sentence level in now reduced to the phoneme
level. As Figure 6 illustrates, when there are two
phonemes for the sliding window, the speech parameter
trajectories are generated and the corresponding speech
samples are synthesized and stored in independently. By
providing the needed real-time audio architecture, as it is
described in Section 3.2, the audio samples can be syn-
thesized, altered and streamed on the fly, only with one
phoneme delay. In other words, it is possible to influ-
ence the generation of the speech parameters and change
the corresponding speech samples with a delay of only
one phoneme. As follows, the spectral envelopes, the
phoneme durations as well as the pitch curves can be
modified as speech samples are being synthesized and af-
fect the final output with only one phoneme delay.
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Figure 6: MAGE synthesis, using a 2-phoneme sliding
window to generate the speech parameter trajectories
and audio buffers.

3.2. The MAGE platform

MAGE is a platform for reactive HMM-based speech and

singing synthesis. It provides an API for reactive pro-
gramming in C/C++, aimed at being included in realtime
audio softwares. MAGE is thread safe and engine inde-
pendent. It is the shell that provides to HTS the needed
real-time audio architecture so that the targeted speech
samples can be reactively manipulated. As illustrated in
Figure 7, MAGE consists of the label thread, that control
how the inputed phonemes are streamed to be processed,
the parameter generation thread, that generates the se-
quences of spectral and excitation parameters by maxi-
mizing the probability of the speech parameter sequence
and finally the audio generation thread that generated the
targeted speech samples. During runtime MAGE will al-
low the input of user controls so that the speech samples
finally outputted in to the audio thread can be reactively
controlled.
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Figure 7: Multithread architecture of MAGE: speech syn-
thesis thread makes the connection between the user con-
trol and the audio thread.

Since MAGE can be easily imported in various frame-
works and it can be simply combined with OSC-enabled
sensors, it allows fast and easy prototyping. Addition-
ally it provides easy context and prosody controls over
the synthesized voice. Contextual control is implemented
based on the label thread and how the available phonemes
are streamed into MAGE, while prosody control is based
on the reactive manipulation of the pitch trajectories,
phoneme duration and vocal tract parameter.

MAGE comes as a consequential implementation, fol-
lowing the idea of performative speech synthesis, as a
way of looking beyond Text-To-Speech (TTS). It is an in-
terdisciplinary project, addressing problems in the fields
of speech processing, linguistics and human-computer in-
teraction (HCI) and it attempts to bring a common plat-
form to address their problems. MAGE is targeted to be
used for approaching and understanding longterm ques-



tions in speech production, such as degrees of coarticula-
tion, speech motor control, speech planning, intonation,
voice quality, speech time scales, etc. through gestural
control and interactive interfaces, mainly through mobile
and social computing.

4. The guitar as a controller
4.1. Introduction

The first time time guitars were used as controllers can be
correlated to the appearance of MIDI guitars. On those
systems, an hexaphonic pickup (1 pickup per string) en-
ables polyphonic pitch and amplitude tracking so as to
drive synthesizers or samplers in order to extend the
sounding possibilities of the instrument. The guitar be-
came, thus, a MIDI controller.

Later, the augmented instruments term and field ap-
peared pushing further the notion of controller by em-
bracing the more global notion of gesture and more
specifically of musical gesture. Anything that gives the
user controls on the produced sound is a musical gesture.

In [29], the author defined the three types of musical
gestures:

e cffective: physical technique employed by the
agent to produce sound (picking, fretting, etc.)

e ancillary: accompanying physical body move-
ments

e figurative: note attack, scalar instrumental struc-
tures, melodic contour

These three types of musical gestures are as many
possible ways to have control on the resulting sound. Re-
garding the guitar, the three types of musical gesture have
been assessed in many different ways expanding each
time the controller notion.

Ancillary musical gesture, e.g, have been used and
mapped to audio effects in [7] and [8]: in the first exam-
ple, an inclinometer on the head of the guitar was con-
trolling the volume of the effect. On the second example,
pressure sensors have been added to the rear of the gui-
tar to catch information on the movement the guitar does
around the belly while the guitarist is playing. This infor-
mation was then mapped to the different parameters of a
wah-wabh like effect.

Figurative musical gestures have been used in [30]
to create a system which analyses the melodic structure
it receives and applies different mappings depending on
which pitch contour is detected. Different effective ges-
tures have been analysed and detected in [31] and [32].
In [33], we developed algorithms for most of the major
guitar playing techniques, i.e, hammer-on, pull-off, slide,
palm muting, bend, natural harmonic notes as well as de-
tection of the plucking point.

During this project, we mainly worked on the first (ef-
fective) type of gesture using the algorithms developed in
[33] and implemented in Max MSP software. The third
type (figurative) of gestures was taken into account, but
due to a lack of time this type of gesture was not included
in the final mapping.

4.2. Guitar playing techniques detection and opti-
mization

The detection of the playing techniques detection was
made possible by the use of an hexaphonic pickup (one
pickup per string, i.e six separate signals), e.g 'Roland
GK-3, which implies that six separate analysis had to
run at the same time. The Max MSP implementations
of the algorithms were first done one by one in order to
test separately their real-time efficiency. However, once
grouped together and working at the same time, the CPU
consumption increased dramatically.

To address this problem of CPU consumption, the
first and main step was to gather every detections in one
patch to define only the needed FFT. Indeed fft ~ Max
MSP object is quite CPU consuming and the first imple-
mentations of the algorithms were using nearly 6 FFT
for each playing technique. Gathering all the algorithms
dropped down the number of FFT at 12, 2 per string: one
was from £ £t~ Max MSP object and the other one from
the sigmund™ external (third party object) used for the
pitch extraction. It has to be noticed that a FFT devel-
oped in C language into an external, i.e sigmund™, is
less consuming than an £t ~ object.

The second element that has been tested was the dif-
ference between the use of abstractions (instances of a
patch, i.e a C++ object is an instance of a class) and
the use of the poly~™ Max MSP object which man-
ages the polyphony and its own DSP consumption. With
poly~ several instances of the same patch can be de-
fined and their processing activity can be totally taken
off the DSP chain and CPU consumption with the mute
message. Muting the different playing techniques algo-
rithm decrease the CPU consumption significantly, how-
ever this solution is useful only in case of someone not
using all the detections, but not in a complete use case.
This functionality remains therefore useful but doesn’t fit
all cases. Another property of the poly ™ is that the DSP
treatment can be specified to be done on all the processors
of the comupter by using the parallel 1 message.

However, despite all these options, the use of six ab-
stractions instead of one poly~ object with 6 voices re-
mains faster. In his lightest version (no graphical object
for output visualization), the detection algorithms used
6% of CPU for the DSP part against 9% with poly~. In
a more friendly version (use of vumeter to monitor the
signal and of other graphical elements to monitor the out-

"http://www.roland.com/products/en/GK-3/



puts of the detections), the consumption increases equally
until, respectively, 10% and 13%.

In both cases, the main element which dropped down
the CPU consumption was the decrease of the number of
computed FFT. Indeed, before gathering all the detection,
CPU consumption was around 50%, 60%. Depending on
the situation the two solutions cited above can be used. If
all the detections are used, the solution with the 6 abstrac-
tions fits best. In the case of not using all the detections,
the solution using the poly ™~ fits better.

Figure 8 shows the GUI of the patch used for the gui-
tar playing techniques detections.
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Figure 8: Patch for guitar playing techniques detection
(from left to right): input of each strings with adjustable
gain, attack, pitch and note on / note off detection bend
and amplitude tracking, left / right-hand attack discrimi-
nation, palm muted notes and harmonics detection.

4.3. Mapping

It has to be noticed, before going into the details, that
these mappings have been chosen in terms of the result-
ing sound they produced. Indeed, they were used in an
improvisation framework where guitar and synthesized
voice were mixed. Flexibility and sound quality were
therefore what led the mappings designs. Moreover, at
the time of the mappings’ conception, no controls over
the structure of the synthesized sentence or text was avail-
able, therefore the guitar could not have been used as a
moving playhead or any similar type of control.

One of the main element used in the mapping between
the guitar and the MAGE synthesizer is a 2D-interpolation
tool (node Max MSP object). With this tool the states
of the interpolation are defined by circles and distances
are outputted as functions of the position of the cursor
regarding each one of the states. The size of the cir-
cles is used as a weight applied to each states in the dis-
tances computation: the bigger the size, the bigger the
state’s influence. In [34], a similar tool has been devel-
oped and described. This interpolation tool can be linked
to the pattrstorage object (store and recall presets)
in order to easily use 2D-interpolation to move through
defined presets. In our case, several voices with differ-
ent parameters were defined as presets and the interpo-
lation helped navigating between these voices, creating
in-between voices when the cursor is in-between presets.

The second element that we added was a trajec-
tory tool to record and play back movements (motion
of the cursor in a lapse of time) into the 2D world of
voices. Subjectively interesting (in terms of generated
sound) trajectories were then recorded to be used as
guitar-controlled materials. Figure 9 shows these 2D-
interpolation and trajectory tools.

Three different mappings, controlling the trajectory
tool, were defined. On each one of those mappings, vol-
ume of the guitar has been mapped to the volume of the
synthesized voice, in order not to have sound unless the
guitar is played. The three mappings are detailed below:

o first mapping: the note on the 3rd fret of the 4th
string (F) loads a defined trajectory and the note on
the 3rd fret of the 5th string (C) plays it. Any bends
played on the 2nd and 3rd string is mapped to the
vocal tract length; the bigger the string is bent, the
smaller the vocal tract length is.

e second mapping: any normal attack on the 6th
string chooses a trajectory and plays it. If time
lapse between two palm muted notes is above a cer-
tain threshold the speed of the trajectory is 4 times
faster.

e third mapping: an harmonic note on any of the
strings overwrites the pitch of the voice. A series
of four pitches are defined so that the voice follows
a simple melody. Playing the note on the 2nd fret
of the first string (F#) changes the series of pitches.
As in the second mapping, the amount of bend is
controlling the length of the vocal tract.

4.4. Discussion

The mappings used and listed above were a first attempt
to give the MAGE synthesizer an intuitive controller.

On the guitar side, it appears that detection informa-
tion needs to be reduced. Indeed, with this kind of setup
(an instrument controlling synthesized or digital sounds)
the player needs to keep a certain correlation between
what he plays and what the audience sees and hears. In
other terms, if a large amount of the detections is used and
mapped to different elements of the synthesized voice,
correlation between what is played on the guitar and what
is heard can become blurry.

Moreover, being too specific about the mapping (i.e,
a specific note played with a specific playing technique)
can prevent the player from a certain flexibility and playa-
bility. In the improvisation context which was ours, these
two elements were important to keep. In the third map-
ping e.g, using all the harmonic notes detection to over-
write the pitch was preferred to using only one specific
harmonic note detection.

On the voice side, it appeared that changing the pitch
of the voice was not that perceptible when the pitch dif-
ference was around a half tone to two tones. Mapping the



pitch of the guitar directly to the pitch of the voice, was
therefore, not the best option.
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Figure 9: 2D-Interpolation and trajectory tools used to
map the guitar detection to the MAGE synthesizer.

5. Results

This project brought us to improve the two frameworks
that we were using. On the one hand, we have been able
to significantly improve both the computational load and
robustness of the algorithms for extracting guitar playing
techniques. Various useful expressive gestures such as
hammers, pull-offs and harmonics can now be detected
reliably on the six strings with a reasonable load on the
computer. On the other hand, MAGE has been completely
rewritten, leading to MAGE 2.0 being released soon, and
this new version clearly leaps forward in term of synthe-
sis reactivity. Due to the previous need in MAGE to pre-
serve compatibility with the sentence-wise stream-based
approach, many memory management issues were pre-
venting MAGE to deliver a constant high-quality output
with convincing reactivity. MAGE 2.0 makes everything
far more usable for performative usages. As a conse-
quence, real mapping strategies could be designed and
tested during the workshop, such as using the tonal qual-
ity of the guitar to control the intonation of synthetic
speech or mapping various fingering techniques to voice
types and vocal effects.
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CITYGATE
The multimodal cooperative intercity Window

Radhwan Ben Madhkour, Pierluigi Dalla Rosa, Marek Hruz, Miroslav Jirik, Ambroise Moreau, Ivan Pirner,
Tomas Ryba, Jakub Vit, Francois Zajga, Petr Zimmermann.

Abstract—CityGate aims at developping a tool for enhancing
telepresence between cities. We based our system on Scenic, a
telepresence software developped in Linux. Our goal is to add
games, interactions design and artistic installations possiblities.
To achive these goals, we developped a system for streaming
custom images instead of images captured by a camera, such
as videos, generated images, preprocessed camera images and so
on. Using this system, we developped a first collaborative game.
It is a Pong-like , controlled by the position of the face. On an
other side, we also started to develop a system for the remote
control of the streaming. At the end, this software will allow to
launch/stop streaming, enable/disable display, etc from a remote
computer and also to ease configuration of the system via a
graphical programming interface (inputs, outputs and processing
blocks).

Index Terms—Telepresence, Cities, Streaming, Art

I. INTRODUCTION

ONS and Plzen will be the European capitals of cul-
ture in 2015. Their respective mainline will be When
Technology Meets Culture and Pilsen, Open Up!.

In order to prepare this event, UMONS and UWB have
started collaborating on digital art technology, starting with
the KINACT [1] project during eNTERFACEI1 in Plzen.

One of the activities that could be organized between
cities as part of the 2015 event would rely on establishing
creative interaction between citizens in both cities. This project
implies to build a common infrastructure for allowing real-
time multimodal interaction. The main goal of the CITYGATE
project is to achieve a first step in this direction, by developing
the technology components required for interaction.

More precisely, the CITYGATE project will allow:

« Audiovisual telepresence streaming,

o Interaction: Games, Dance and Music performances,
Vling / Dling ...,

o Cooperative multiplayer (social) games (like in KIN-
ACT),

« Digital art installation.

The rest of the paper is organised as follows. Section II
describes the Citygate architechture. Section III presents the
Scenic telepresence softawre [2], an open source software on
which Citygate is based. Section IV introduces the use of video
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devices in linux and especially explains the loopbackvideo for
linux devices. Section V is dedicated to the description of the
shared memory, an option of Scenic for sharing the image sent
with other software. Section VI gives details about our first
tests. Section VII describes the first collaborative games im-
plemented using the telepresence software. Section VIII shows
how we have thought the remote control interface. Finally,
Section IX concludes the work and gives some perspectives
to improve the system.

II. SOFTWARE ARCHITECTURE

The citygate software will be decomposed in 4 parts:

Core The core of the Citygate is the streaming system. This
system is based on the software Scenic. The goal is to
be able to stream custom images and sound. The image
could be simply a webcam streaming, a synthesized
image or a processed camera image. In the case of the
sound, it’s already possible to send custom sound using
PureData or other software using a jackd server.

Connections In order to let artits take the full control of the
system and send their real time performances for their
favorite framework, connections with common librairies
and frameworks ( OpenFrameworks [3], Processing, Pure-
Data, etc) and Citygate are required. Image and audio
streaming from those apps to remote client through
Citygate will be implmented.

Remote control The remote control is a set of commands for
controlling the system remotly. These commands include
a port and ip settings, camera selection, streaming launch
action, display switch on/off, ...

Plugins Games, permanent installations and other softwares
would be installed as plugins in the system.

Figure 2 shows the normal use of Scenic. The goal of this
project is to achieve a system like the one presented in figure 1
with multiple connections with third party “creation” softawre,
a plug-in abillities to allows games and other process and a
remote control interface.

III. SCENIC

Scenic is an opensource telepresence software developed
by the SAT (Society for Arts and Technology, Montreal). It
allows to do visio conference with multiple audio canals and
additional MIDI control. Scenic is composed by two parts:
a GUI written in Python and a streaming program called
“milhouse” written in C++.
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Fig. 2: Scenic architecture. Users can send/receive image,
sound and midi control. Images are acquired via v4l camera,
DV camera or firewire. The acquisition of the sound is done
with a mix table through a jackd server.

Scenic is optimized for the collaborative artistic perfor-
mance. The synchronization between audio and video is ac-
curate and the streaming system is efficient.

IV. LOOPBACK DEVICE

In linux, each connected video device has a video buffer.
This video buffer is created in the /dev directory when a device
is connected. The buffer is named /dev/videoX in the case
of a video4linux device, X being the number of the device
(eg. /dev/videoO for the first device connected, /dev/videol for
the second device connected, /dev/videoN for the nt"* device
connected).

In our case, we want to send custom images. Hence, Scenic
has to connect to a virtual video device. This device is created
with video4linux loopback device. A loopback device is a
video buffer created by the user and not the kernel. Even if
there is no camera connected, a loopback device can be created
and Scenic considers it as a valid video devices. Custom
images are created and pushed in the loopback buffer. For
a correct transmission, the image has to be adapted to the
device color space and subsampling model (e.g. YUV422 or
YUV420 depending on the buffer settings).

V. SHARED MEMEORY

With the loopback devices, we can send custom images.
Nevertheless, in case we want to process the received image

before it is displayed, an access to the received image is
needed. Scenic has the hability to push the image received
in a video buffer. This buffer can be read using the library
libshmdata.

VI. APPLICATIONS AND TESTS

We tested different configurations.

1) From OpenCV to Scenic

2) From Scenic to OpenCV

3) From OpenCV to OpenFrameworks
4) From OpenFrameworks to Opencv

Figure 3 shows the results for different scenarios tested. In
the case of OpenCV [4] transmission (figure 3a), we work on
a Mat or Ipllmage. Once all the processing is done, we push
the data using the pointer on the array. For OpenFrameworks,
the rendered image or region corresponding to the loopback
device resolution is grabbed and pushed in the buffer.

VII. PLUGINS

The pong game was chosen as an example of implementa-
tion of the plug-in system. It uses the library OpenCV. The
rules of the pong game are simple. Two players play against
each other each player. They are located on one side of the
game window. The player controls a pad’s vertical location.
The game begins with a stationary ball in the middle of the
playing field. The ball then moves in a random direction
towards one of the players. The goal of the game is to hit
the ball with the pad and send it to the other side so that
the other is not able to play back. If the ball passes one
players side the other player gets a point. The pad is controlled
by the movements of the player’s head. The code of the
game is utilizing the plug-in system developed during the
workshop. The main class GamePingPong is inherited from
the class GameLogic. The GameLogic class is a virtual class
with one method doStep. In current implementation, the class
takes two images into account; one local image captured on
a local machine and one remote image send via net. The
implementation can be easily rewritten to take 1..N images
into account. The doStep method should define what happens
in one frame of the game. In case of the Pong game, one
step of the game is composed of the call of two method:
preparelmageAndDetectFace and ping_pong. Both method are
explained bellow.

A. Method preparelmageAndDetectFace

This method converts the original RGB image into a gray-
scale image and resizes it. For now we use a scale factor
0.5 which makes the image of quarter area. We equalize the
histogram of the image for a better face detection accuracy. To
detect the face we use our FaceDetector class which utilizes
the OpenCV function detectMultiScale. When the face is
detected its coordinates are transformed back to the original
coordinate system of the image a returned as an output of the
method. If the face is not detected the face structure entries
are set to zero. The method is called twice, once for local and
once for remote images.
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(a) Opencv video grabber (v4l based), edge detection and
transmission.

(c) OpenFrameworks app. On the left, Openframeworks local
grab (frame are bufferized in a FILO and displayed with a
transparency). On the right, the frame transmitted via Scenic
is acquired in OpenFrameworks through the shared memory
and displayed.

(d) The OpenFrameworks left part of the screen in figure (c) is
transmitted. This figure show the difference between the local
image grabbed and the image received from OpenFrameworks.
The code is written with OpenCV.

Fig. 3: First results and tests

B. Method ping_pong

This method is the core of the game logic. It is provided
with both images and face regions. In the first step (or frame)
the game is initialized. The necessary images are loaded from
hard disk. It is the background image (backgrounf.png) and
an image of the ball (ball.png). The size of the playing field
is given according to the size of the background image. The
collision detection rectangle size of the ball is given according
to the size of the ball image. The images of pads are also
loaded from the disk (pad.png) and the collision rectangles
are set for players according this image. This concludes the
initialization step which is not repeated during the game. Next,
the game analyzes the output of the face detection algorithm.
If there was no face detected for several frames (in current
implementation 10) the Al takes over. The Al is perfect in the
sense that the pad is always following the ball. It is limited
only by the maximal allowed speed of the pad. If a face
was detected the center of the player’s face is the desired
destination of the pad. We calculate whether the transition
from current location to the desired one is allowed with
respect to the maximally allowed speed. If not the transition
is truncated to the maximally allowed value. This creates a
certain lag in the movement which makes the game more
difficult to master. This process is repeated for the other player
too. Next, the ball is moved. The collisions are computed using
the collision detection rectangle. If the rectangle of the ball
passes the edge of the screen the player on the opposing side
is given a point. If the rectangles of the ball and the pad collide
the new direction of the ball is computed. The x component of
the speed vector of the ball is negated so that the ball moves in
the opposing direction. The y component is chosen randomly
to give a little twist to the game. After this analysis the result
is rendered to the screen and the process is repeated from point
1.

C. Discussions

The first tests are conclusive and the game is fun to play
even if it is simple. Nevertheless, if the seond player is far from
the second one, a delay could appear and affect the gameplay.
To solve this issue, we intend to implement a server client
architecture where each player is a client and the server is
managing the game. Moreover, a true plugin architecture has
to be put in place to replace the current function-based” plug-
ins. Figure 4 shows the final results of the Pong game

VIII. REMOTE CONTROL

The remote controller is an important element in the whole
infrastructure because it is the main interface of the core
system. The interface should show actions for pre-processor
and enable the input to be activated.The main inspiration for
the functional positioning of element comes from DJ consoles
and from node base editor.

There is a list of inputs on the left, every input could be
connected or disconnected from the outputs that are shown
as an other list on the right. The implementation is done in
OpenFrameworks.
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Fig. 4: Network Pong game controlled with the face position

The operations that could be done between inputs and
outputs are:

« connect an input to an output;

o delete the connection;

« set a value on a preprocessor.

The communication with the core system is made thanks to
Open Sound Control (OSC).

During the initialization the remote control ask for the list
of inputs and visualize them. The same happens for the list of
outputs that is provided by the core system. In the prototyping
phase was build a simulator for the core system that gave to
the remote controller the information about inputs and outputs
at startup.

Every time a module is added or a connection is done the
remote controller send a message to the core system to notify
the change.

Moreover it is possible to visualize in the interface of the
remote controller the frame rate of the application, or it is
possible to set some action like start/stop or any other action
could be defined. The list of inputs notify the type with an icon
that explicitly help understand which kind of device is behind.
The integration of the remote controller with the preprocessor
depends strictly with the input device, it is meant to be linked
with OSC.

The main idea is to build a node editor that could allow
the maximum modularity and expandability of future devel-
opment.

IX. CONCLUSION

During this project, we developped a system for streaming
custom images and audio. This system is based on Scenic,
a telepresence software implemented by the SAT, Montreal
(CA). Our system extends Scenic with the possibility of
connecting it with different tools. A Pong-like game was
developped to demonstrate the possibility of interaction. We
also started to create a remote control to change settings and
manage the system from a remote place.
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1 Introduction

In many intelligibility studies, it was demonstrated that the speaking style referred to as clear speech is
significantly more intelligible than conversational (or casual) speech. This intelligibility gain exists for
both normal-hearing and hearing-impaired listeners (e.g. elderly persons and linguistically inexperienced
listeners like non-native (L2) speakers and children). Also, in a two-way conversation in which one person
is affected by an adverse listening condition and one is not (e.g. between one person speaking to another
via telephone where the other is in a noisy club, or in a cafeteria, in the street etc.), the person who
is not affected still manages to make adaptations (on acoustic-phonetic and linguistic levels) that are
quite specifically tailored to counteract the specific communication barrier that the other person is
experiencing. These adaptations show that clear speech is not defined in a uniform way, but that there
are different styles of clear speech depending on the adverse condition that the speech is heard in. In
this context, Active Speech Modifications refer to the speaking-style adaptations or strategies a speaker
applies in order to maximize communication effectiveness.

Identification and effective manipulations of the most prominent acoustic-phonetic characteristics of
different styles of clear speech can allow for the development of new, signal based, active speech modifica-
tion algorithms to increase intelligibility. The algorithms can consequently improve speech intelligibility
in many situations, such as in the design of hearing aids, telephony, and other speech signal processing
technologies and applications (i.e., speech synthesis, recognition, enhancement, etc).

The purpose of this project was to use modern speech analysis and reconstruction algorithms to:

e identify which acoustic-phonetic characteristics are prominent in different styles of clear speech (e.g.
babble-countering clear speech, vocoder-countering clear speech, L2-“countering” clear speech) and
when they are realized in time.

e model a selection of these aspects so that they can be applied automatically on speech, to enact
prosodic changes, changes in amplitude spectrum, modulation frequencies, etc..

e run a series of “proof of concept” perception experiments to see if the “specifically-enhanced”
speech is better perceived in the “matched” adverse condition than other types of clear speech
(there is evidence that this is the case with the naturally-enhanced speech).

The outcome of the project can be summarized as follows:

e a new speech corpus (P8-Harvard corpus) was linguistically and meta-linguistically annotated and
acoustically analyzed with the goal of identifying which acoustic-phonetic characteristics differ
between clear and casual speech and also between different styles of clear speech. Moreover,
acoustic analyses on specific features were also performed on a different corpus, namely the LUCID
database (specifically on read clear and read casual speech signals).

e among the different styles of clear speech, prosodic changes were most apparent. Therefore, sig-
nal modification algorithms were developed to mimic human adaptations on prosody in adverse
conditions with the aim of increasing intelligibility.

e a user-friendly interface, XPlic8, for a large range of acoustic analyses was developed.

a set of evaluation experiments was prepared to evaluate the different modifications.
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This report is organized as follows. Section 2 describes the P8-Harvard corpus that contains the
different speaking styles for analysis. In section 3 the linguistic analysis of the corpus is presented.
Section 4 focuses on the analysis of the voice source characteristics between different styles of speech on
the P8-Harvard corpus (and on the LUCID corpus to a less extent). In section 5 prosodic differences
between the different speaking styles are examined with focus on the number of pauses and the mean word
duration. Section 6 introduces two novel time-scaling techniques that try to modify casual speech signals
to achieve higher intelligibility scores, mimicking the properties of the elicited clear speech. Section 7
presents a novel tool for a large range of acoustic analyses. Section 8 summarizes the work of this project.

2 P8-Harvard Corpus design and recording

A corpus of materials was recorded and analyzed to provide information about the acoustic phonetic
enhancements typically seen in clear speaking styles produced in speech with communicative intent. The
aim was to record materials which were controlled and standardized (Harvard sentence lists) but where
clear speaking styles were elicited naturally, due to communicative need, rather than via instructions to
read materials clearly (LUCID corpus[1]). For that purpose, the first 15 lists of the Harvard sentences
(1969) were recorded. These sentences, which are phonetically-balanced and each include 5 keywords,
were developed for speech quality evaluations.

2.1 Recording procedure

Two British English speakers, one female and one male were each recorded (as “Speaker A”) with a
confederate (“Speaker B”). Speaker A had to read a sentence to Speaker B who had to repeat it back to
Speaker A. So as to induce Speaker A to make an effort to speak clearly when Speaker B was experiencing
a communication barrier, speakers were told that the speaker pair that achieved best “intelligibility
scores” would win a prize. Speaker A was told to only say the sentence once even if errors were made
by speaker B in repeating it. Two types of communication barrier, following Hazan and Baker (2011),
were used in order to elicit clear speaking styles that may differ somewhat in their acoustic-phonetic
characteristics. In the “babble” (BAB) condition, Speaker B heard speaker A’s voice mixed with 8-
speaker babble noise at an approximate level of 0 dB SNR; in the “vocoder” (VOC) condition, Speaker
B heard speaker A’s voice passed through a three-channel noise-excited vocoder which spectrally degraded
the signal. 150 sentences in each of the three conditions ("no barrier” NB, BAB, VOC) were recorded
for the two speakers.

Speakers were seated in separate sound-treated rooms. Beyerdynamic DT297PV headsets fitted with
a condenser cardioid microphone were used and the speech was recorded on two separate channels at a
sampling rate of 44100 Hz (16 bit) using an EMU 0404 USB audio interface and Adobe AUDITION.
Only Speaker A’s output was analysed here, since speaker A was talking in a non-barrier environment.

3 Linguistic analysis of the P8-Harvard Corpus

For the linguistic analysis of the P8Harvard corpus, Praat [2] along with several analysis algorithms was
used.

3.1 Initial processing

For all sentences, a Praat textgrid was produced with three tiers: tier 1 contains speech (SP) and silent
(SILP) regions markers, tier 2 had word aligned markers and tier 3 phoneme-level aligned markers.
Sentences (five sentences for Speaker Al and 12 for Speaker A2) were excluded from the corpus since
they contained mispronunciations or hesitations on one or more of the keywords.

3.2 Linguistic Annotation of corpus

The Harvard database [3] is a set of 72 phonetically balanced lists of 10 sentences, each containing
5 keywords. Three lists were recorded for the current project, and in addition to existing keyword
coding, the database was enriched with broad/narrow grammatical annotation, lexical frequency and
neighborhood density. A summary of the added information to the Harvard database is given in Table 1.
Word- and phone-level annotation were semi-automatically carried out and merged with the Harvard
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database. The resulting corpus comprises of 2293 manually check words and 6902 segments for the two
speakers in the three recording conditions.

Information Description

word Orthographic form of the word (punctuation re-
moved)

lemma Lemma of the word

keyword Keyword coding of the word (keyword vs. non-
keyword)

PoS Part of speech. Categories are: Adj, Adv, Conj,
Det, DetP, Ex, NoC, Num, Prep, Pron, Verb,
VMod

freqBNC BNC! frequency of occurrence of the word (in-

flected form). Occurrence per million in a 100 mil-
lion spoken and written word corpus

neighPhon  Number of all phonological neighbours that dif-
fer from the word by a 1l-phoneme substitution,
deletion, or addition. Extracted from the de-Cara
database?.

freqCxS Celex spoken frequency of corresponding lemma.
Occurrence per million in a 17.9 million spoken
word corpus

freqCxW Celex written frequency of corresponding lemma.
Occurrence per million in a 17.9 million written
word corpus

Table 1: Harvard database annotation tagging. 3 lists were annotated for a total of 1066 words.

3.3 Analysis of communication effectiveness

The number of correctly-transmitted keywords was calculated per condition. The percentage of keywords
correct in the BAB condition was 88% for Al and 73 % for A2, while in the VOC condition it was about
40% for both speakers. The VOC condition was therefore harder for both speaker pairs.

Communication breakdowns were defined as sentences in which 3 or more keywords were not correctly
repeated by speaker B. Fig. 1 highlights these breakdowns and the sentences immediately following them
(see also Section 4.6).

nb wrong keyword >= 3

\./NJN/ LA At Al M/NJMMNM
Q?ﬁ?M SRR i o S R VP e
TN -l i A A

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150
sent

—e— wrong keyword proportion —e— |last breakdown

breakdown —e— following breakdown

Figure 1: Identification of communication breakdowns for speaker A1 and A2 in BAB and VOC con-
ditions, defined as sentences in which more than 8 keywords were missed in the interlocutor repetition.
A distinction is made between “breakdowns” (orange lines) and “last breakdowns” (red lines), the lat-
ter depicting breakdowns immediately followed by sentences in which 2 or less keywords were missed
(“following breakdowns”, green lines).

I British National Corpus. Available online at http://ucrel.lancs.ac.uk/bncfreq
2de-Cara database. Available online at http://portail.unice.fr/jahia/page12414.html
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4 Analysis of the voice source and spectral characteristics be-
tween different styles of speech

The analysis of voice source characteristics of the P8 corpus included three types of speech: NB, BAB and
VOC speech. The idea was, that if there would exist differences between the voice source characteristics
of these two voice types, this information could used to convert normal speech into the more intelligible
speech in the barrier cases.

The main analysis tools for this task were glottal inverse filtering, pitch detection, glottal closure
instant detection, voice source feature extraction and formant detection using Praat. These tools were
developed as Matlab scripts for the purpose of the project and details regarding the analysis tools are
provided in section 7, since all these analysis algorithms were incorporated in a new proposed analysis
tool.

4.1 Glottal flow waveforms and Harmonic analysis

Main findings were that the different voice types did not differ significantly in terms of the use of the
voice source. Figure 2 shows the glottal source waveform for the speech signals on the three different
conditions, BAB, VOC and NB for the male and female speaker. In Figure 3 the corresponding spectra
of the glottal source are depicted. Figure 4 shows a slight decrease of the harmonic-to-noise ratio in the
barrier cases for both speakers Al and A2.
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Figure 2: Glottal source waveform for the speech signals on the three different conditions, BAB, VOC
and NB for the male(a) and female speaker(b)
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Figure 3: Glottal source waveform for the speech signals on the three different conditions, BAB, VOC
and NB for the male(a) and female speaker(b)
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Figure 4: Harmonic-to-noise ratio for the three different conditions NB, BAB, VOC for the male speaker
A2 (left) and the female speaker A1 (right).

4.2 FO0 analysis

The FO detection is based on glottal inverse filtering and autocorrelation peak detection. The algorithm
implemented to extract the FO and the FO range from the speech signals is described on section7. These
estimated values for the the whole P8-Harvard corpus where statistically analyzed with ANOVA. As
expected FO median was higher for the female speaker [F(1,137) = 16343.6,p < 0.001]; it was also
higher in the VOC condition than in the NB [t = 19.3;p < 0.001;df = 132] and BAB conditions[t =
—10.7;p < 0.001; df = 132], and higher in the BAB than NB conditions [t = —7.6;p < 0.001;df = 132].
FO range also varied across conditions [F'(2,274) = 9.5;p < 0.001]: it was broader in BAB than in both
NB [t = —2.4;p = 0.018;df = 132] and VOC [t = 4.8;p < 0.001;df = 132]. However, FO range did not
differ between the NB and VOC conditions [t = 1.8;p = 0.067; n.s.; df = 132]. The interaction between
speaker and condition was also significant [F'(2,274) = 3.9;p = 0.02].

4.3 LTAS

The Long Term Amplitude Spectra (LTAS) were also estimated for the P8Harvard and the LUCID
corpus (the algorithm for the estimation of LTAS is described in Section 7. Previous studies correlate
the increase of intelligibility of clear speech with the higher energy in the frequency band 1-3kHz relative
to casual speech. Figure 5 depicts the LTAS for speakers A2 (left) and Al (right) correspondingly for
the barrier and no barrier conditions of the P8-Harvard corpus. The male speaker increases his energy
above 1000Hz especially for the VOC condition and less on the BAB. For the female speaker there is a
slight increase between 2000-4000Hz for the BAB condition and a significant increase above 5000Hz.

LTAS LTAS

10 ! ! . - ! ! ! ! ! ! .
I N\B or EEENE |
I BAB I BAB
I VOC I VOoC

Magnitude (dB)

. . . . . . . k| . . . . . . .
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz) Frequency (Hz)

Figure 5: LTAS of the male (left) and female speaker (right) for three different conditions NB, BAB and
voc
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For the 21 speakers in the LUCID database, averages over all voiced frames of the speaker were
computed. The obtained results indicated that for most speakers, the spectral tilt decreases from CV to
CL speech. In addition, some energy reallocation to the 1-7 kHz frequency region took place for most
speakers. An example of a computed LTAS is shown in Fig. 6 for speaker F38 where the previously

mentioned effects can clearly be seen.
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Figure 6: The long-term average spectra (LTAS) of conversational (CV) and clear (CL) speech and their
difference for female speaker F38 in the LUCID database. The LTAS are computed over four sentences

for each condition.

However, the results also varied significantly across speakers. For instance, the energy reallocation
patterns were in most cases very different and furthermore, for some speakers the spectral tilt was further
increased. This indicates that the speakers used very different strategies to produce clear speech.

A repeated measures ANOVA was done on the measure of intensity (LTAS 1 — 3kHz) for the P8-
Harvard corpus. LTAS was calculated separately for each sentence. There was a main effect of speaker
[F(1,131) = 22.0;p < 0.001], and of condition [F'(2,262) = 547.8;p < 0.001]; post-hoc paired t-tests
show that the BAB condition was greater in intensity (mean = —3.1) than the VOC (mean= -3.6)
(t =4.8;df =131;p < 0.001) and NB conditions (mean = —6.9) (t = —26.8;df = 131;p < 0.001). There
was also a significant interaction of speaker and condition [(F(2,262) = 124.7;p < 0.001]; post-hoc
analyses show that there are significant speaker-specific strategies in terms of intensity (¢t = —15.4;df =
131,p < 0.001): for A1, the BAB condition has a greater intensity than the VOC condition (mean
difference between VOC and BAB = —2.3), while for A2, the VOC condition has a greater intensity
than the BAB condition (mean difference between VOC and BAB = 1.2).

4.4 Energy distribution in critical bands

A sinusoidal signal analysis/synthesis mode was used to check the differences between the clear and
causal speech on the LUCID corpus. The idea was to investigate the differences between the two speaking
styles, clear and casual speech, according to their sinusoidal features (including amplitude and frequency)
extracted at the designed critical bands. For this, a pitch-independent sinusoidal model is designed which
extracts one sinusoid per critical bands, hence with a fixed dimension equal to the number of critical
bands. To design the critical frequency bands we used the 24 center frequencies and bandwidth derived at
16 kHz of sampling frequency. In order to reflect more accurately the subjective loudness of speech signal
for the masker noise, the ITU — R468 noise weighting filter was taken into consideration. The highest
spectral amplitude per frequency band was selected to avoid sidelobe peak problem. This modified the
center frequency and bandwidth of some of the critical bands. The sinusoidal model designed as such
showed a hardly distinguishable difference between the re-synthesized and the original signal.
Experiments were conducted on voiced frames of length 16 ms with a frame shift of 4 ms for two
speakers, M8 (male) and F22 (female), of the LUCID database. Figure 7 shows the histogram of the
amplitude (top) and frequency (bottom) of clear (blue) and casual speech (red) at a specific critical
sub-band characterized with its center frequency and bandwidth for the male speaker M8. Figure 8
shows the histogram of the the amplitude (top) and frequency (bottom) of clear (blue) and casual speech
(red) at a specific critical sub-band characterized with its center frequency and bandwidth for the female
speaker F22. The center frequency and bandwidth for each critical band is shown at top of each subplot.
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Figure 7: Histograms of the amplitude (top) and frequency (bottom) of clear (blue) and casual speech
(red) at a specific critical sub-band characterized with its center frequency and bandwidth for the male

speaker M8

67



#band2[f =150 BYv=100]

#band4[f =350,8w=100]

#bandS[f =450 BW=110]

-20
-40

-60

- -0

40 40

/0 -G0

a0 o 0 gl
o 10 20 @ oo WA

#band14[f =2150,B\W=320] #band15[f =2500 BW=380] #band" 6[f_=2900 BW=450] #band1?[fc:3400,BW:550]

e =20
40 -40
60 B0
-a0 -80

#bands[f =570,8W=120] #band12[f =1600BW=240]

#band18(f =4000BvW=700]

| 50 .
-40 a0 0
-60 &0 -0
ar) a0 R R 80
iy . O . L
i 2 4 i 1 2 3 o2 4 3

=]
(]
=
o
o
=]
ha
=
m

#band2[f =150,BW=100]

#banddff =350 Bw=100]

06
06
04
04
02 02
o o [
04 02 0 02 05 0 05

#band14[f =2150,BW=320]

0.06
0.06 0.os

0.04
0.04 003

0.02
0.0z

0.m

#band 15[f =2500 BWW=380]

01005 0 005 04

#bands[f =450 BYv=110]

0.4 04
03 03
02 02
i ol
0 0

05 1}

#band16[f =2900 BW=450]
0.025
0.0z
0.015

004
o003
00z
0.0
o

0.0
0.005
]
0.2 01 0

#bandblf =570,BW=120]

#band17[f =3400BW=550]

#band12(f =1600 BW=240]
015

0.1

#band18[f =4000 Bw=700]
0.025
0.02
0015
0m
0.005

Figure 8: Histograms of the amplitude (top) and frequency (bottom) of clear (blue) and casual speech
(red) at a specific critical sub-band characterized with its center frequency and bandwidth for the female

speaker F22



The x-axis of each subplot is the range for amplitude or frequency. For frequency case, the x-axis is the
frequency deviation from the center frequency (f.) normalized by the bandwidth (BW) to make it a
standard random variable called (fstandard):

fstandard = (f - fc)/BW (1)

The amplitude histogram figures, indicate the amount of energy difference per critical band between
clear speech and casual speech. It is observed that for clear speech we have significantly more energy
contribution than that for casual speech. This is well pronounced for frequency bands lying higher than
450 Hz. Looking at the changes in the frequency of clear and casual speech at critical bands, it is observed
that the two speech styles have differences at frequency bands between 2000 and 4000 Hz (critical bands
13 to 18).

Future analysis can be performed in this domain. The idea is to find a way to model these differences
between the barrier and no-barrier speech. Using the learned statistics, the final goal is to modify the
barrier speech (causal speech), in terms of its sinusoidal parameters at critical bands, in order to improve
the speech intelligibility. One possible idea is to increase the energy distribution of the causal speech at
certain critical bands.

4.5 Vowel space

In order to visualize and quantize the vowel pronunciation of different speakers and styles, vowel spaces
are useful. The vowel space is a plot of the mean of vowel instances in a 2D plane defined by the first
and second formant frequencies. The area that the observed vowels span in this space then reflects
the discriminability of the vowels. Previous studies report the expansion of vowel space in the case of
clear elicited speech versus casual speech. The vowel spaces have been generated as follows. First, in
order to isolate the vowel instances in the corpora, all of the speech was segmented using an HTK-based
audio-to-text aligner. No manual corrections were performed. For each vowel instance, formant analysis
is performed using the Praat algorithm [2]. The representative pair of F1 and F2 values for each vowel
instance is then taken as the values at the center of the speech segment. For each vowel, the mean
over all of the vowel instances is trimmed, with 95% of the data kept, in order to limit the influence of
potential outliers. Then, the convex hull (i.e., a polygon fit that encompasses all of the data points) is
calculated in order to represent the vowel space area. The convex hull is selected to represent the vowel
space area in this work because it effectively captures the maximum area that the points in the vowel
space span. Figure 9 depicts the vowel space in the three conditions for speakers Al and A2 as defined
by the largest-area polygon fit (convex hull) for the 4 tense and 6 lax vowels (95% trimmed means).
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Figure 9: Vowel space in the three conditions for speakers A1 and A2 as defined by the largest-area
polygon fit (convex hull) for the 4 tense and 6 lax vowels (95% trimmed means).

A per-vowel analysis was run on the measures using a mixed-model ANOVA, with vowel as a between-
subjects factor, and condition (NB, BAB, VOC) as a within-subjects factor. The analysis showed a
significant condition effect on all three vowels /i/, /p/ and /o/ for Speaker A1l (p = 0.0398) but no effect
for Speaker B. So, for Speaker A, vowel space expands as follows: NB < BAB < VOC'. Additionally,
no significant interaction was found between vowel type and condition for either speaker.
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4.6 Analysis of speech produced post communication breakdown

Sentences with more than two keywords incorrectly perceived were classified as having caused “com-
munication breakdown”. To find out whether there are significant differences between the pre- and
post-breakdown sentences in terms of acoustic characteristics, for Speaker Al, acoustic analyses (i.e.,
sentence duration, LTAS at 1-3 kHz and 5-8 kHz, FO median and range) were compared for breakdown
sentences and post-breakdown sentences where all keywords were correct. In the BAB condition, there is
a trend for longer sentence duration (p = 0.163) and significantly higher LTAS (5-8 kHz) post breakdown
(p < 0.05). In VOC condition, effects were not significant but a trend for lower FO median and higher
FO range post breakdown can be discerned. Although no correlation between sentence duration and
communication effectiveness was found, a gradual increase in sentence duration was observed as time
progressed in BAB condition for Speaker Al.

5 Examining prosodic differences between speech styles

The P8-Harvard corpus was also analyzed on time-domain, focusing on the number of pauses, mean word
duration and the “rhythm” between the different speech styles.

5.1 Number and duration of pauses

In order to detect the number of pauses in the sentences of the whole P8-Harvard corpus, an algorithm
was implemented to detect parts of speech signal with no proper speech content(NS, Not-Speech) such
as pause between words, or even closure within stop consonants, etc. The silence detector relies on
a low-loudness detection function based on the Perceptual Speech Quality measure. First the total
loudness of the speech signal is computed by PSQ (ITU Standard REC-BS.1387-1-2001) and then the
normalized loudness is computed dividing by the maximum loudness of the signal. A frame of the signal
is considered NS if its normalized loudness is less than 15%. After cross-validation using a subset of
files with manually-detected pauses (50 files from the P8-Harvard corpus) and it was found consistent.
According to the linguistic context where the low-loudness part was located, the function could address
the following type of Not-Speech:

e S: part of signal with loudness above threshold

e NS: generic low-loudness part of signal

e NSg: low-loudness part of signal at the beginning-end of the sentence

e NS,.: low-loudness part of signal, which is part of a stop consonant inside a word
e NS;,: low-loudness part of signal between two separate words (Inter-Word pause)

® NSiusc : NSi, in which the second word begins with stop consonant and therefore it is not possible
to say if it is a pause or the closure of the consonant.

Applying the automatic detector to the P8-Harvard database, it was possible to compare the number
of Not-Speech in different conditions. Table 2 contains the number of Not-Speech for each category,
speaker and condition and Figure 10 has the average number of the total number of inter-word pauses
per each utterance.

Al A2
Typeof NS NB BAB VOC NB BAB VOC
sc 437 492 529 433 470 520
iw 32 65 155 17 24 75
iwsc 176 209 220 130 162 182
sil 295 293 298 277 276 276
nc 1161 1386 1615 947 1059 1247

Table 2: Number of instances of different type of NS
The first results showed an increasing number of NS parts in the speech along with the difficulties in

the communication. #NSyoc > #NSpap > #NSnp for both speakers, even though the male speaker
tends to compensate less to the adverse conditions, as confirmed by other analysis.
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A significant increase is worth to mention in the number of intra-words NS (N S;,,) between the VOC
barrier and the other two conditions in both speakers as Figure 10 explicitly shows. This confirms that
when the communication channel is really destructive and there is no direct feedback of it, the speaker
focus the main part of his/her effort to greatly decrease the speaking rate.

12 7 W A1 (female)
1 - H A2 (male)
0.8 -
06
0.4 -
0 T T
NB BAB VOC

Figure 10: Average number of inter-word pauses (NS, ) for each utterance in different conditions.

Further insight can be gained by looking at the durations of the different silence categories: Fig. 11
shows that, apart from leading/trailing silences (IN.Ss;;), all types of silences undergo durational increase
from NB to BAB to VOC, particularly the interword pauses (NS;,). In contrast, speech part durations
remain stable, highlighting a possible speaker strategy of reducing speech rate by detaching the words.
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Figure 11: Mean speech and silence durations for speakers A1 and A2 across NB, BAB and VOC.
Errorbars are 95% confidence interval.

5.2 Mean Word Duration analysis

The Mean Word Duration (MWD) for each type of condition was measured accurately using the silent
detector, since the inter-word durations within utterances could be identified and subtracted to the word
durations.

The results plotted in Figure 12 and Figure 13 display the change of duration in the VOC and BAB
condition with respect to the No-Barrier condition during the experiments sessions. First observation
is that all speakers elongate their speech production, especially in the worst condition (VOC barrier).
This evolves along the sessions. However, this is not consistent between the two speakers for the BAB
condition. Speaker A2 maintains mean word duration and mean content word duration stable. Speaker
A2 was found to be less effective in the compensation, he slightly elongated the speech (~ 20%), only in
the VOC barrier case but he didn’t adjusted his speech any further. This lack of efficiency was confirmed
by the amount of the errors the listener made which were much more compared to the errors he made
during the session of speaker Al.

71



Al - BAB-NB - ALL WORDS Al - BAB-NB - CONTENT WORDS

= £
o c
kel K=l
IS IS
[ (2]
c c
K=} o
(] []
20 40 60 80 100 120 140 ’ 0 40 60 100 120 140
— — o
=] =] 2
= = |,,£.1ﬂ;;..l|| |
c = v..I b
S S Ml
© IS
(o] (o))
c c
o o
(O] (]
20 40 60 80 100 120 140 20 40 60 80 100 120 140
sentence [n] sentence [n]

Figure 12: FElongation strategy of female speaker Al in the experiment sessions. On the left-hand side
the mean word duration related to all words is shown, whereas on the right-hand side there is the mean
content-word duration only.
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Figure 13: FElongation strateqy of male speaker A2 in the experiment sessions. On the left-hand side
the mean word duration related to all words is shown, whereas on the right-hand side there is the mean
content-word duration only.

72



In Figure 12 and Figure 13 the red line is a 3rd-order polynomial curve that fits the data. Based
on the shape of the line, three different stages emerge in all sessions, particularly for speaker Al and
the most stressful condition, i.e. the VOC barrier. At the beginning, the speaker starts with almost the
same mean word duration as the NB condition, but as soon as he/she received intelligibility feedbacks
from the listener, he/she increased the effort (i.e word duration) and hence a steep slope is seen at the
beginning of the session. In the central part, the curve is flatter and the hypothesis is made that the
current elongation is effective for the condition and the listener and no further adaptation is needed.
In the final part, speaker A1l increased mean word duration further and it is hypothesised that she was
trying to compensate the listener’s tiredness, whereas, in the same conditions, speaker A2 seemed to
cease making the effort to elongate, maybe due to a lack of motivation towards the end of the session.

Some correlations were investigated between the increase/decrease of mean word duration in a ut-
terance and the number of listener’s errors, but no clear relationship was found yet due to difficulties in
comparing the two completely different data domains.

5.2.1 Rhythmogram analysis

The rhythmic patterns which differentiate barrier and no barrier speech was also investigated. For this
task the rhythmogram [4] was employed. The Rhythmogram is a hierarchical representation of speech
rhythm, from which one can extract the locations of relative prominences in the speech signal. This
is achieved in a first step by computing auditory-based energy envelope with different time windows,
and, by linking the peaks at different scales in a subsequent stage, enabling the identification of global
(e.g., sentence-level) prominences (see Fig. 14). The detected prominences might undergo different
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Figure 14: Rhythmogram analysis for the sentence “The birch canoe slid on the smooth planks”. Plain
line stems identify relative prominences, dashed stems relative silences. Prominences and silences strength
1s determined by their highest value on the y-azis, and their location in the speech signal by their minimum
value (smallest filter width).

modifications by talkers in the reduction processes from clear to casual, and suggested a comparative
analysis between clear and casual speech.

Using the manually annotated temporal mapping between clear and casual speech on a different
Database (LUCID database), we assessed whether prominences and silences were treated differentially
by talkers. Results on 69 pairs of matched casual/clear speech sentences showed that speech segments
containing silences were significantly more compressed than prominences. (p<.001), Fig. 15. This shows
that the nonlinearities observed in the temporal reduction from clear to casual can be explained by the
rhythmic properties of speech: whereas silences appear to be suppressed from clear to casual, prominences
tend to be preserved.

Given this result, prominence and silence locations were further characterized in terms of what
sound class they fell in the P8-Harvard database comprising the NB and the two clear speech eliciting
communicative barrier conditions BAB and VOC. The results presented in Fig. 16 show that most of the
detected prominences fell into sonorant sound classes, i.e., vowels, nasals, and to a lesser extent, liquids.
On the other hand, silences were found in stops, fricatives and annotated silences (occurring mainly in
VOC condition, cf. Section 5.1). It should be noted here that the silences detected in the stop segments
sound classes were mainly “low-level” silences in the rhythmogram hierarchy, and are not captured by

73



0.8-

ts

0.6-

0.4-

0.2-

elo si

lab

Figure 15: Time scale factor of speech parts containing silences and prominences in clear speech.

the global/salient silences detection. This analysis shows which segment would mainly benefit from an
intrinsic time-scale modification based on the rhythmogram (cf. Section 6.2).
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Figure 16: Prominences and silences locations in sound classes in one non-barrier condition (NB) and

two clear speech eliciting conditions (BAB and VOC). The filter width is controlled by o: the higher the
number, the more global the prominence / silence.

These analyses provided a first pass characterization of the rhythmic properties of clear speech over
casual or less clear speech styles. Future directions for assessing the specific places which differ between

the speech styles could include acoustic analyses in the vicinity of detected prominences/silences, and
global rhythmogram pattern analyses.

6 Proposed Time-scale modifications

Analysis of the P8-Harvard corpus showed a consistency of the speakers to elongate content words and add
more pauses in the barrier cases. These adaptations result to a lower speaking rate of the speech signal.
Therefore, two time-scaling modification techniques were developed in order to mimic the adaptations
that speakers Al and A2 make when they elicit clear speech in the barrier conditions. These time-scaling
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techniques elongate the non-stationary parts of speech in order not to introduce artifacts to the speech
signal and insert pauses to the signal. The first time-scaling technique is based on the Rhythmogram of
speech and the second on the Perceptual Speech Quality Measure (ITU Standard REC-BS.1387-1-2001).

6.1 Perceptual Speech Quality Measure based Time-Scale Modifications

The Perceptual-Speech-Quality measure (PSQ) is used to elongate the stationary parts of casual speech
and to define where to insert pauses to the signal. The Perceptual Speech Quality measure is based on
the basic version of ITU StandardREC — BS.1387 — 1 — 2001, a method for objective measurements of
perceived speech quality. It estimates features such as loudness and modulations in specific bands, in
order to describe the input signal with perceptual attributes.

Two metrics of the PSQ model are used to detect the stationary parts of speech, where time-scaling
can be applied: the perceived loudness of the signal in low bands and the loudness modulations in high
bands. Analytically, PSQ estimates the perceived loudness on the low frequency bands (0-300Hz) of the
signal, where unvoiced speech is less likely to be present. However, some voiced stop consonants, e.g. /d/,
have high energy in low frequency bands. Time-scaling voiced stop consonants would cause distortion.
Therefore, the loudness metric is not sufficient to decide which parts should be elongated. Then, another
metric is introduced, namely the loudness modulations of high frequency bands (around 4000Hz). The
loudness modulations in high frequency bands are strongly correlated with the non-stationarity of the
signal and are able to detect voiced stop consonants. Therefore, the combination of the two metrics is
proposed, called the Elongation Index (EI), defined as:

_ JL—-M, L-M < threshold
El= {71, L—M > threshold (2)

where L is the average perceived loudness in low bands and M the loudness modulations in high frequency
bands. EI is calculated for each frame of the signal. If EI exceeds a threshold then the frame is allowed
to be elongated. The lower the threshold, the more likely is to capture non-stationary parts. EI does
not depend on the energy of the signal and its threshold is defined between [1.3 - 1.4].

An example of how EI is calculated for a speech signal is shown on Figure 17. The speech signal
depicted on Figure 17 corresponds to the phrase “made a sign.” The loudness in low frequency bands,
as calculated by PSQ, is depicted with a green curve whereas the modulations in high frequency bands
are in red. Voiced phonemes like /ey/ and /e/ have high loudness on low bands and low modulations on
high bands. In these cases, EI is above the threshold and these phonemes are allowed to be elongated
(Figure 17b). Phoneme /d/, as a voiced consonant, has high loudness in low bands as well as high
modulations in high bands, so it is not allowed to be elongated. For consonants like /s/ the loudness
metric is lower than the modulation metric. Therefore, they will not be elongated either. Notice that
the value of EI in Figure 17b is not important, rather, the sign of EI is taken into account.

Each frame that can be elongated is now the center of a window with duration 20msec. Then, for
this frame, a time-scale factor of 120% is created. The time-scale factor for the total sentence duration
consists of the time-scale factors only for the frames that will be elongated. The time scale factors for
these voiced frames are given as input to WSOLA [5], which then time-scales the signal.

6.1.1 Pause Insertion

Pause insertion is also implemented using the PSQ model. The perceived loudness of the speech signal
in the whole band is estimated. Then, loudness is normalized by the maximum loudness of the signal
and on this loudness curve, the valleys that are 30% lower than the maximum loudness of the signal are
detected. The valleys with very low values, less than 10% of the normalized loudness of the signal, can
be considered silences. On the other hand, it is observed that the valleys that fall within the loudness
interval (10%, 20%)] usually are in the middle of word boundaries and are appropriate for inserting
pauses without distorting the signal. The pauses that result from these valleys are called aggressive
pauses to distinguish them from the pauses derived from the valleys with very low values of loudness
(non-aggressive). The PSQ algorithm adds both non-aggressive and aggressive pauses to the signal.
The reason for the distinction between aggressive and non-aggressive pauses is that the algorithm uses
different techniques to do the insertion. First, the non-aggressive pauses are inserted on the signal by
adding a constant pause of 90 ms duration. Then, in order to insert the non-aggressive pauses on the
location where the signal has higher loudness, a pre-processing of the signal before and after the location
of the valley must be made. The pre-processing involves a time-scaling of the signal around the location
where the gap will be inserted, if this is allowed by the stationarity restriction. Then, after scaling, a
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hamming window is applied on the center of the valley so that the transition from speech to silence will
be more smooth.

6.2 Rhythmogram-Inspired Time-Scaling and Pause Insertion

The speech rhythmogram has been proposed by Todd and Brown [6, 7] in order to model prosody
perception. In order to generate the rhythmogram, the speech signal is first pre-processed to simulate
the processing of the auditory periphery. In particular, the speech signal is first rectified and then
raised to the one-third power. This processing approximates the loudness of the speech. Then, for the
rhythmogram generation, multi-scale filtering is carried out by convolving the pre-processed speech with
Gaussian windows of varying length in time. The peaks or prominences of the levels (corresponding to
different Gaussian window lengths) are then linked in order to capture and visualize the overall rhythm
of the speech. The following describes how this rhytmogram analysis of speech is used to inspire a
time-scaling and pause insertion algorithm for speech.

Given the previously described observations on the differences between clear and casual speech, a
PSQ-based algorithm for time-scaling and pause insertion was proposed. The rhythmogram provides a
simple way to approximate the PSQ-based algorithm, in that it also elongates louder parts of speech
while largely avoiding non-stationarities. Moreover, valleys in the rhythmogram level curves are used to
detect where to insert pauses. Simplifying the processing by removing the need for calculation of the PSQ
measure then frees up the rhythmogram-based approach (in terms of complexity) to provide additional
pause enhancement using a WSOLA-based interpolation scheme. Explicitly, the rhthymogram-based
time-scaling and pause insertion can be broken down and described in the following steps.

6.2.1 Pause Detection and Insertion

First, in order to approximate loudness, step 1 is to rectify the speech signal and raise it to the one-third
power, mimicking processing in the auditory peripher. A “gross” Gaussian window (50msec length) is
then convolved with the processed signal. The valleys in the resulting envelope then represent the longest
pauses, or silences in the signal. This envelope is normalized so that its maximum value is one. The
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location of the deepest valleys, defined as those more than 40% lower than the envelope maximum, are
then used to indicate where zeros are inserted in the signal (see Figure 18). The length of the insertions
are inversely proportional to the envelope valley depth, with the lowest valley being elongated the most
(80msec).

Pause insertion detection

1 T T T

0.5

— original signal
—— Rhythmogram level curve (50msec)
O valleys (-40%)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 2
time (sec)

Figure 18: Rhythmogram-based pause detection.

6.2.2 Time-Scaling

A similar process to that used for the pause detection and insertion can also be used for time-scaling.
In particular, the speech signal (with inserted pauses) is processed and the envelope (rhythmogram level
curve) extracted in the same way. However, in this case, the time-scaling seeks to elongate prominences
(peaks) and also silences (valleys) in the envelope. Like for the PSQ-based algorithm and uniform scaling
described in this work, WSOLA is used for the time-scaling. Consequently, the normalized envelope from
the rhytmogram level will determine the time-scaling factors that are input to WSOLA. In particular,
the mean of the normalized envelope is first removed. The result is then rectified, so that the valleys
become peaks. With this rectification, the parts of the envelope corresponding to transitions in speech
(e.g., non-stationarities) lie near zero, as they have energy lower than the loudest parts of speech, yet
higher than silences. The rectified envelope is then scaled by a maximum scaling factor, so that the
time-scaling will not involve a factor larger than this amount. The scaling factors input to WSOLA are
then one plus the scaled, rectified envelope. So, the non-stationary parts of speech will have a scaling
factor near one and the rest of the speech will have a scaling factor above one, to elongate the signal,
but below the specified maximum scaling factor (the maximum scaling currently limits the time-scaling
factor to 2). Figure 19 shows an example of the input to WSOLA based on the rhythmogram-inspired
time-scaling.
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Figure 19: Rhythmogram-based time-scaling.

7 The GUI: XPlic8

As one of outputs of P8, XPlic8 is a MATLAB-based graphic tool for carrying out a series of analyses on
single or batch of signals. It comprises of a set of functions for acoustic-phonetic measurement of speech,
as typically used in speech science and phonetics research.

XPlic8 is able to perform seven acoustic-phonetic analyses and two visualization methods on sentence,
word and phoneme levels. These are listed below:

e Analysis

— Duration (s)

— F0 median (Hz)

— FO range (Hz)

— LTAS energy between a specified frequency range db SIL
— Spectral tilt (dB/oct)

— Vowel space (F1 (Hz), F2 (Hz))

— Centre of gravity (Hz)

e Visualization

— Source features analysis (8], [9]
x LPC Spectrum
* Harmonic-to-noise (HNR) ratio plot
x Average glottal flow waveform
— Vowel space plots
% Plot of F1/F2 of tense vs. lax vowels
* Plot of mean F1/F2 for all vowels
% Plot of centre of gravity for /i/-/v/-/o/

Note that some analyses can only be performed on certain levels and also rely on the existence of
corresponding annotation files for the signals. The detailed results from the analyses can be exported
in plain text format that can be used as direct input for statistical applications such as SPSS or R for
further analysis.

7.1 Analysis algorithms

The analysis algorithms developed during this project and incorporated in the GUI XPlic8 are described
below.
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Figure 20: The GUI XPlic8

7.1.1 FO estimation

A rough FO0 trajectory prediction is performed prior to actual pitch detection. This is done in two stages:
The first stage is to high-pass filter the speech signal in order to remove possible low frequency noise,
followed by defining the rough FO range. This is performed by using simple inverse filtering of the speech
signal in order to remove most of the formants and then integrating the signal in order to get a signal
close to glottal flow. This is done frame-wise with a 40-ms window. The rough fundamental period is
estimated by evaluating the autocorrelation sequence of the signal and then finding the maximum peak
that corresponds FO between 50 and 500 Hz. Those frames with low energy or high zero-crossing rate
(ZCR) are classified as unvoiced. FO range is defined as:

FOpin, = mediom(fo)%2 (3)
FOppar = 2.2median(fo) (4)

The actual pitch detection takes place after the initial estimation of the FO range. The analysis
window size is adjusted to the estimated FO range so that it is twice the lowest fundamental period
(2/F0pin). The glottal inverse filtering method used in FO estimation is iterative adaptive inverse
filtering (IAIF) which estimates the glottal flow signal of the frame using linear prediction such that the
fundamental period from the vibratory glottal flow waveform can be estimated. The fundamental period
is estimated again finding the maximum peak of the autocorrelation sequence.

For post-processing, two highest peaks are saved: First, the post-processing involves forming a contin-
uous trajectory from the two trajectories. This is based on the relative jump of the trajectories compared
to a local FO median. Second, 5-point median filtering is applied to smooth out outliers. Third, the
unvoiced parts are set to zero based on the energy, ZCR, autocorrelation peak value, and gradient index.
Fourth, the FO trajectory is filtered with a 3-point medial filter. Finally, the median FO0 is defined as the
median of the non-zero values of the trajectory. The F0,,;, and F0,,,, are defined as the minimum and
maximum non-zero FO values of the trajectory.
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7.1.2 LTAS energy in specified frequency ranges

The energy is computed as the intensity in SIL (sound intensity level) dB on the specified frequency range.
The input sample is windowed with a 5-ms rectangular window without overlap and a 1024-length Fourier
transform (using the FFT function) is computed for each frame. To obtain the normalized intensity for
each frame, the energy in the specified frequency range is normalized by the length of the FFT, the
length of the window (in samples) and the sampling frequency. Finally, the normalized intensities of all
the frames are summed and the corresponding decibel value is computed by using the reference value
IO = 10612.

7.1.3 Spectral tilt

The average spectral tilt is computed by fitting a regression line to 1/3-octave band energies of the
LTAS (long-term average spectrum) in logarithmic scale. The LTAS is computed in 5-ms frames without
overlap. For each frame, a 2048-length Fourier transform (with the fft function) is computed and the
LTAS is obtained as the mean of the absolute values of the Fourier transforms over all frames. The
average energy in the LTAS for each third-octave band is computed and normalized with the width of
the band. These values are then transformed to logarithmic scale and a first-degree polynomial fit is
estimated (using function polyfit). The average spectral tilt (in dB/octave) is three times the value of
the first coefficient of the polynomial.

7.1.4 Vowel space (F1, F2)

The formant extraction tool returns the formant values in the middle point of the selected segment. It
uses Praat [2] to extract the formant values for each consecutive frame in the selected speech segment
and the cheapest paths through those values. Then, the values related to the centre of the time interval
are chosen. This function returns formant info for every selected phone and this data is also used to plot
the vowel space. Most of the analysis options are already optimised and cannot be changed: Time step
= 0.01 s, Maximum formant number = 7, Number of paths to tracks = 5, Formant search range ceiling
= 6500 Hz, Pre-emphasis filter lower limit = 50 Hz, Duration of the analysis window (0.025 s). For
a detailed description of these parameters, please refer to the online Praat manual (Sound to Formant
(Burg) and Formant Track)

7.1.4.1 Formant extraction The sound is re-sampled (Sound: Resample) to a frequency of twice
the value of maximum formant and a pre-emphasis filter is also applied (Sound: Pre-emphasize (in-line)).
For each analysis window, a Gaussian-like window is applied and the LPC coefficients are as per the
algorithm by Burg, as (Childers, D.G., 1978) and (Press, W.H. et al., 1992). The number of "poles” in
this algorithm is set as twice the maximum number of formants. The algorithm finds the best peaks in
the selected range of frequency (between 0 Hz and the maximum formant value). Then, all formants
below 50 Hz and above the ceiling minus 50 Hz are removed because very low frequency (near 0 Hz)
and very high frequency (near the maximum) peaks cannot usually be associated with the vocal tract
resonances and they are likely to be artifacts of the LPC algorithm.

7.1.4.2 Formant tracking After the formant candidate extraction, a tracking on these values is
performed in order to rearrange the peaks to obtain the best formant tracks. This command uses a
Viterbi algorithm with multiple planes and chooses the cheapest path through all the previously selected
peaks (Formant Track). The cost function for one track (e.g. 2) with proposed values Fy; (i = 1...N,
where N is the number of frames) is:

N

CostFunction = Z frequencyCost
i=1

|F2,; — referenceFy|
1000

N B, .
+_ bandWidthCost 2

i—1 2,1
N—1

+ Z transitionCost|loga
i=1

+ ()

Fy; |
Fo i1

B
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where frequencyCost, bandWidthCost, transitionCost, and referenceF2 values are fixed and all set
to 1. Analogous formulas compute the cost of other tracks. The procedure will assign those candidates
that minimize the sum of all-track costs.

7.1.5 Centre of gravity (CoG)

The Centre of Gravity is a measure of the spectrum energy distribution. The average spectrum on the
speech segment is computed. It uses the Praat software [2]. Given the complex spectrum, S(f), f is the
frequency, the CoG is computed by

/O FISCF)Pdf (©)
divided by the“energy” o
/o S(f)df Q)

The value of p is chosen to be 2. For further details please refer to the online Praat manual (Spectrum:
Get the centre of gravity).

7.1.6 Source features

For details of FO prediction refer to FO estimation. The polarity is estimated by comparing the positive
and negative energy of the glottal flow derivative signal. If the negative energy is greater, the speech
signal most likely has positive polarity (and vice versa). After FO and polarity detection, a suitable
window size is selected for estimating the parameters (3/F0,,in). Iterative adaptive inverse filtering
(TIAIF) is applied to the speech signal to separate the vocal tract transfer function and the voice source
signal. Then, various parameters are extracted, such as:

e [0 and voiced /unvoiced decision 3

e LPC and FFT spectra of voiced speech

e LPC and FFT spectra of unvoiced speech
e LPC and FFT spectra of vocal tract

e LPC and FFT spectral of voice source

e Speech energy

e Harmonic-to-noise ratio (HNR)

e H1-H2 value of the glottal flow signal

e Normalized amplitude quotient (NAQ)

e Individual glottal flow pulses and their average

The harmonic-to-noise ratio is evaluated by peak picking of the harmonics and then comparing the
magnitude difference between the harmonics and the inter-harmonic valleys. These values are averaged
to five equivalent rectangular bandwidth (ERB) bands. Normalized amplitude quotient is evaluated for
each glottal flow pulse and thus averaged to one value for each frame. Finally, all the estimated unique
glottal flow pulses are interpolated to constant length and averaged to estimate the average glottal
flow waveform. Parameters are post-processed with median filtering. Statistics of the parameters are
evaluated with 95% confidence intervals.

30nly available when single WAV file is selected and the analyses are performed on sentence level.
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8 Summary and Conclusions

A new speech corpus, the P8-Harvard corpus, was linguistically and meta-linguistically annotated and
acoustically analyzed. The aim was to identify which acoustic-phonetic characteristics differ between
clear and casual speech then to modify casual speech to sound as intelligible as clear speech.

The P8-Harvard corpus contains, for each of two speakers, 150 sentences produced in a casual and
two clear speaking styles. It is provided with word- and phoneme-level annotation, as well as pause
annotations. Communication was harder in the communication barrier conditions, as shown by a decrease
in keywords correctly transmitted, with the VOC condition being harder for both speakers. Acoustic-
phonetic analysis revealed that sentence duration increased significantly in the barrier conditions, but
that this was mainly due to an increase in pause duration, with a greater number of inter-word pauses
seen in the more difficult (VOC) condition. Speakers also altered their FO in the barrier conditions
(higher FO median in both conditions, broader F0O range in BAB condition only), and increased speech
intensity (mid-frequency region), especially in the BAB condition. Speaker Al hyperarticulated her
vowels in the barrier conditions but no significant vowel space expansion was seen in male speaker A2.
Evidence of communication-barrier specific strategies was seen. There was also evidence of differences
in enhancement strategies across the two speakers for most dimensions.

Analysis of the P8-Harvard corpus showed a consistency of the speakers to elongate content words
and add more pauses in the barrier cases. These adaptations result to a lower speaking rate of the
speech signal. Therefore, two time-scaling modification techniques were developed in order to mimic the
adaptations that speakers Al and A2 make when they elicit clear speech in the barrier conditions. These
time-scaling techniques elongate the non-stationary parts of speech in order not to introduce artifacts
to the speech signal and insert pauses to the signal. The first time-scaling technique is based on the
Rhythmogram of speech and the second on the Perceptual Speech Quality Measure (ITU Standard REC-
BS.1387-1-2001). a set of evaluation experiments was prepared to evaluate the different modifications.
The evaluation must be done by native listeners therefore no listening tests were conducted during the
Enterface2012.

Finally, a significant outcome of P8 is XPlic8, a MATLAB-based graphic tool for carrying out a series
of analyses on speech databases. It comprises of a set of functions for acoustic-phonetic measurement of
speech, as typically used in speech science and phonetics research.
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using a Brain-Computer Interface
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Abstract—The goal of this project is to use inverse reinforce-
ment learning to better control a JACO robotic arm developed
by Kinova in a Brain-Computer Interface (BCI). A self-paced
BCI such as a motor imagery based-BCI allows the subject to
give orders at any time to freely control a device. But using
this paradigm, even after a long training, the accuracy of the
classifier used to recognize the order is not 100%. While a lot
of studies try to improve the accuracy using a preprocessing
stage that improves the feature extraction, we work on a post-
processing solution. The classifier used to recognize the mental
commands will provide as outputs a value for each command
such as the posterior probability. But the executed action will
not only depend on this information. A decision process will
also take into account the position of the robotic arm and
previous trajectories. More precisely, the decision process will
be obtained applying an inverse reinforcement learning (IRL)
on a subset of trajectories specified by an expert. At the end
of the workshop, the convergence of the inverse reinforcement
algorithm has not been achieved. Nevertheless, we developed a
whole processing chain based on OpenViBE for controlling 2D-
movements and we present how to deal with this high dimensional
time series problem with a lot of noise which is unusual for the
IRL community.

Index Terms—Inverse reinforcement learning, Brain-

Computer Interfaces, Motor imaginery, Robotic arm

I. INTRODUCTION

Brain-Computer interfaces (BCI) [1] interpret brain activity
to produce commands on a computer or other devices like a
robotic arm (see figure 1). A BCI therefore allows its user, and
especially a person with high mobility impairment, to interact
with its environment only using its brain activity.

A major difficulty to properly interpret the mental command
lies in the fact that brain activity is very variable even if
a particular task is reproduced identically. Beyond the noise
acquired by the recording system, background brain activity,
concentration, fatigue or medication of the subject are the
source of this variability. This variability makes it difficult
for the classifier to recognize the different mental commands.
Specific preprocessings such as common spatial pattern filter
[2] are useful to help distinguish the mental command. How-
ever, this effort is not always sufficient. It therefore becomes
necessary to explore new solutions to address this variability.
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Thus, it is now necessary to make decision systems able to
deal with this variability. This is why some projects introduce
a reinforcement learning in their BCI system such modifying
the classifier [3]. We propose to use reinforcement learning in
a broader context.

In this project we studied how a reinforcement learning
can improve the control of a robotic arm. More precisely, the
decision process will take into account a subset of trajectories
specified by an expert and the position of the robotic arm
in addition to the usual outputs of the mental commands
classifier.

II. METHODS

The goal of this study is to present the possible improve-
ment on command recognition obtained by a post-processing
performed by an inverse reinforcement learning algorithm. In
this section, we first present the almost standard processing
chain we used to obtain four different commands using motor
imagery. Then we present how inverse reinforcement learning
can help to better identify the mental order provided by the
user.

A. A BCI system based on motor imagery

For controlling a neuroprosthesis of the upper limb several
options are available nowadays. Firstly, the neural activity
in the arm/hand area of the motor cortex can be directly
recorded and decoded using invasive [4] or noninvasive elec-
trodes ([5], [6]). But it is also possible using noninvasive
electrodes to exploit various physiological phenomena such as
sensorimotor rhythms, event-related desynchronization/event-
related synchronization, event-related potential or steady-state
visual evoked potentials. In particular, motor imaginary [7]
can be used to control a 2D cursor ([8], [9]) or perform a 3D
control [10]. They can even be combined in a hybrid BCI [11].
We selected motor imagery for several reasons: i) intending
to produce a real movement is more natural for controlling a
neuroprosthesis, ii) no additional device is needed to produce
stimulations if used in a self-paced mode [12] iii) it has been
already used successfully with healthy people [13] and patients
[14] and iv) it can be used for rehabilitation [15]. Nevertheless,
the number of commands is small (two or three usually); the
information transfer rate is slow (1 action per 8s); and the
accuracy is not very high (80 %).

We used motor imagery (MI) in a system-paced BCIL
Having a self-paced BCI is not essential for this study and
it is technically easy to switch from one mode to the other.



ENTERFACE’12 SUMMER WORKSHOP - FINAL REPORT; PROJECT P10 : ARMBAND 84

signal

Signal

Command
identification

features | order

temporal pattems)

L]
3 kI "CN’J

[Blectrical gapdastics]

Fig. 1.

Feedback (gg@y;g,{ auditory, haptic...)

e L

The Brain-Computer Interface loop : from electroencephagraphic signals acquisition, feature extraction and classification to feedback. Our project

will add a decision process based on an inverse reinforcement learning in the command identification module.

We defined a standard processing chain for motor imagery
based on the parameters used for the Graz paradigm. We
want to identify four commands corresponding to four motor
imageries: left hand, right hand, both hands and feet. These
four MI will allow us to control a robotic hand in a 2D
horizontal space using respectively left, right, forward and
backward commands [16].

We used a conventional montage for MI when applying a
preprocessing based on common-spatial filters [17], [18], [2].
Then, among various possible classifiers to detect the MI [19],
we selected linear discriminant analysis for its stability. More
details are presented in the following sections.

1) Signal acquisition: We used a TMSi Refa amplifier with
32 EEG channels. We only selected 13 electrodes : Fz, FC5,
FC1, FC2, FCe, C3, Cz, C4, CP5, CP1, CP2, CP6, Pz (see
Fig. 2) located according to a layout 10/10 on a WaveGuard
32 channel sintered Ag/AgCl. This system use a AFz ground
and a common average. We used a sampling rate of 512 Hz.
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Fig. 2. Position of the selected electrodes for motor imagery of left hand, right
hand, both hands and feet. The green electrode corresponds to the ground, the
black ones are the main locations of our motor imageries and the red ones
are useful for common spatial patterns.

2) Pre-processing: We used a 4th order Butterworth band-
pass filter 8-30 Hz to only keep mu and beta bands.

Then we applied a Common Spatial Pattern (CSP). This
filter takes into account the distribution of each class of a
two-classes classification. The variance of the filtered signal

is maximal for one class and minimal for the other class.
Thus, we want to extremize using generalized eigen value
decomposition:

wCwT

wCowT

J(w) = leXlin _
wXo XJ wT
where X; is the multichannel EEG signals from class i, C;
is the EEG spatial covariance matrix for class i and w is the
spatial filter to optimize.

We obtained features f = log(wCw?).

3) Motor imagery paradigm: Figure 3 presents our timing
for motor imagery. Each session contains 20 trials per class.
After the presentation of the cue, we analysis the signal for
3,5 seconds. The features are extracted for a 1-s period. We
use a sliding window of 100 ms to repeat the analysis and
confirm the decision of the classifier using a vote.

4) Classifier: For discriminating four motor imageries, we
combined one-versus-all linear discriminant classifiers (one
per class). In case of ambiguity, the longest distance to the
separation plane shows the winner class.

5) Device: By default, the JACO arm can be controlled
using a joystick. An API by Kinova is available to read sensors
and send commands of movement for a specific direction and
a specific duration. This API provides a virtual joystick. This
mode of operation does not make it possible to specify the final
position of the arm. Thus, interacting with the JACO arm via
the API necessitates the definition of elementary movements
(right, left, forward, backward, up.). The VRPN protocol
already implemented in OpenViBE is a natural candidate
to control the arm. Thus, we used a VRPN client/server
using predefined action IDs which can be interpreted by the
JACO arm as virtual joystick commands but sent through our
application. The recording features also supports the recording
of VRPN clients’ commands.

B. Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) is the problem of
eliciting a succinct description of a task from demonstrations
by an expert [20]. This succinct description of the task can
then be used to train an agent in order to make it imitate the
expert.
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Fig. 3. Timing used for the motor imagery paradigm.

More formally, IRL assumes that an expert is acting opti-
mally in an Markov Decision Process (MDP)[21] and seeks
the reward function for which this expert is optimal. As noted
in the existing literature, this is an ill-posed problem in the
Hadamard sense. However, recent advances [22] in the domain
may make solving the IRL problem on large or complex tasks
feasible.

In our setting, we would like to use IRL to alleviate the
problem of accuracy in order recognition from BCI signals.
By using information about previously recognized commands
and learning from human-labelled movement sequences, it
should be feasible to gain a certain consistency in the overall
arm movement. To put it in another way, after seeing a few
examples of the arm moving in a direct manner from point A
to point B, one is unlikely to admit a command that make the
arm flail in seemingly random directions.

Using hand-labelled arm trajectories as expert demonstra-
tions, we wish to extract a reward function that could be used
to train an agent to recognize commands from BCI signals.
The main challenges behind this task are the difficulty of
finding a suitable MDP setting for casting the problem, the
high dimensionality of BCI signals, the sparsity of data for
both reward function inference and its optimization by an
agent once the expert’s actions have been analyzed by the
IRL algorithm.

One of the main assumption of IRL is that the expert is
acting optimally in an MDP with respect to an unknown re-
ward function. Our goal when choosing a MDP setting for our
experiment is to try to make that assumption hold. In previous
test for the algorithm we used, the expert was explicitly created
from a reward function and an MDP. Although the reward
function was unknown to the IRL algorithm, it existed. Sharing
the same MDP as the expert is one of the basic assumption
made by the analysis of our algorithm. In this setting, however,
the so-called expert is an omniscient agent as the path the
arm followed was fixed in advance and the operator only had
to follow it. There may or may not exist a MDP describing
the process. We tried more than one characterization of the
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problem, discovering various flaws, and understanding better
and better the subtleties of the exercise as we went on. This
is described in the next section.

BCI signals typically are high dimensional time series with
a lot of noise. From a signal processing perspective they are
quite a challenge. This is very unusual for the IRL community
who is more used to toy problems (although impressive
applications have been published [23]) where the dimension is
low and the observation perfect. IRL can be applied to partially
observable environments, although it is not the direction we
wish to take here as it has its own set of challenges, mainly
related to computation cost explosion. The high dimensionality
problem has been circumvented by the use of SCIRL, a new
IRL algorithm that among other advantages is quite fast to run.
The low signal to noise ratio, however, is at the heart of our
problem and the very reason for the existence of this project.
It raised its lot of problems when trying to come up with a
reasonable MDP setting.

The model for our system being unknown yet (although
modeling the brain have been promised over and over by sci-
fi authors, it is not yet within the reach of a one-month project)
we had to rely on sampling to make things work. This means
that we had to rely on expert demonstration only to retrieve
a reward function and to optimize it. Reward inference from
expert data only is one of the marketed features of SCIRL.
Having access to samples drawn by a random policy is one
of the many ways to run a Reinforcement Learning (RL)
algorithm, and the most accessible to us. The high practical
cost of generating samples with a BCI prevented us from
getting even that in the allocated timeframe.

To wrap up, although IRL may alleviate the accuracy
problem in BCI driven settings, the many challenges this
approach implies are far outside the comfort zone of the
community.

III. RESULTS

We installed OpenViBE, a user-friendly open-source tool for
BClIs, on a windows XP system. This system supports both a
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OpenViBE scenario designed for on-line use. EEG signals are

JACO robotic arm driver and a Refa32 amplifier driver.

We built OpenViBE scenarii for i) signal acquisition ii)
common spatial pattern filter training iii) classifier training
and iv) offline use (see Fig. 4 and Fig. 5).

A. Standard motor imagery recognition

State-of-the-art similar results were obtained with imaginary
and actual movements. The best combination strategy was the
one-vs-all combined with a voting classifier. There were much
less confusion and thus, better overall performance. It often
happened that some classifier outputs had a very high confident
level while the correct class was not represented. Confusion
matrices were similar in both conditions (see Table I).

B. IRL

Let us disclose the end story immediately: not all challenges
exposed earlier were overcomed.

86

TABLE I
CONFUSION MATRICE OBTAINED ON A TESTING SESSION.

S Predicted classes

§ left hand | right hand t | both hands | feet
S left hand 0.9 0 0.05 0.05
S " right hand 0.1 0.8 0.1 0
E both hands 0.1 0.05 0.85 0.05
&) feet 0.1 0.1 0 0.8

The most hacky topic in the whole ordeal clearly was
the composition of the state and action space of the MDP.
Encouraging results were obtained on a simulation built to
validate an initial approach. Sadly, this failed to generalize
to the real thing as the real noise was much higher than
modelized. A second, more sound approach was built, in
which the state space directly consists in the output of the
spatial filters and the last decision taken by the agent. This
parametrization did not show any deep flaw and would be our
goto parametrization if we are given the opportunity to work
on this problem again.

The high dimensionality of the MDP was not a problem for
our IRL algorithm, which was indeed able to infer a reward
only from a few expert demonstration (corresponding to less
than an hour of work for the operator).

Sadly, and this is the blocking point of the experiment so far,
we were not able to train an agent on this reward. We need
more data, specifically data sampled with a policy different
from the expert’s, in order to use the basic RL algorithm we
tried to use [24]. We were thus not able to assess the quality
of the found reward, although the fast convergence of SCIRL
let us hope that it was good. We hope to solve this problem
by either using less data greedy algorithm [25] or brutally
generating more data (cumbersome for the operator). Another
solution would be to use spatial filters able to deal with a
displacement of the BCI, in order to allow the use of data
from different sessions.

IV. CONCLUSION

We developed a whole processing chain using OpenViBE
for controlling a robotic arm. According to the literature, we
designed OpenViBE’s scenarii (acquisition, filtering, classi-
fication and on-line use) based on a classic motor imagery
paradigm. We selected four motor imageries (left hand, right
hand, both hands and feet). They are respectively associates
with 2D-movement (left move, right move, forward, back-
ward). We used common spatial filters and one-versus-therest
(linear discriminant analysis) classifiers. Our goal was not
to improve the paradigm parameters but study how inverse
reinforcement learning can help to select the right movement
according to the classifier outputs and stored trajectories. Our
classifier accuracy corresponds to the state-of-the-art. Thus, it
is possible to control the Jaco to press a button. But, up to now,
the IRL algorithm is not converging so cannot help to perform
the right movement. Nevertheless, a significant analysis of
the difficulties to apply IRL on high dimensional and noisy
problem and ways to overcome them has been done.
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Fig. 6. Visual explanation of the IRL pipeline.

V. PERSPECTIVES

A deeper study is necessary for understanding the non-
convergence of the IRL algorithm. If the IRL algorithm is
robust enough, we will modify the processing chain to have
a self-paced BCIL. In the future, we also would like to use
multiclass classifiers to avoid ambiguities due to the one-
versus-therest approach. We would like to explore the tongue
motor imagery to replace the both hands one. This choice
avoids overlapped locations with the other motor imageries.
We need to assess performance in offline and online conditions
with a large population.
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